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ABSTRACT 

Breast cancer is the second leading cause of cancer related deaths in 

women. Advanced breast cancer can metastasize to the lungs, liver, bones and 

brain becoming fatal conditions for many patients. There is a dire need for 

metastasis preventing medications, however the process required for a 

medication to become FDA approved for clinical use is long and arduous. 

Studies have found promising benefits for breast cancer patients given 

ToradolTM, or racemic ketorolac, as an NSAID during resection surgery. 

However, long-term use of racemic ketorolac is not recommended. Currently 

FDA-approved for use in the racemic form, ketorolac has the potential to become 

a valuable off-label drug for cancer patients, and if given as a single enantiomer, 

may not cause toxic effects. 
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Recent work on ovarian cancer cell lines has shown (R)-ketorolac to have 

an effect on invasion and migration abilities via interaction with small Rho-

GTPases. We hypothesized that (R)-ketorolac would likewise have the ability to 

inhibit breast cancer invasion and migration by binding to Cdc42, Rac1 and 

RhoA. 

The activity of racemic ketorolac and its enantiomers, (S)-ketorolac and 

(R)-ketorolac was studied in both in vivo and in vitro settings. In breast cancer 

cell lines it was shown that ketorolac does not affect the viability of cells, but does 

inhibit colony formation and migration. In MMTV-PyMT mouse models, ketorolac 

treatment does not appear to have toxic effects on the organism, and may 

prevent early mammary gland tumor growth and, in older mice, metastasis. 

These studies suggest that the (R)- enantiomer of ketorolac may be useful in 

preventing tumor growth and metastasis without imparting significant toxicities. 
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1. INTRODUCTION 

1.1 Breast Cancer Prevalence  

Breast cancer is the second most commonly diagnosed cancer in women 

(1). Although it is most often diagnosed in postmenopausal women, breast 

cancer affects individuals of both sexes and all ages. In 2015, an estimated 

234,190 new cases will be documented and 40,730 individuals will die from 

breast cancer (1). The latest statistics from the American Cancer Society show a 

decline in the total number of breast cancer related deaths over recent years, but 

breast cancer is still the second leading cause of cancer related deaths in women 

after lung cancer (1). 

Risk for developing breast cancer is increased by a variety of factors 

including genetic mutations, lifestyle habits and non-modifiable medical 

conditions and treatments (1). A conscious effort can be made to decrease risk 

but ultimately avoiding breast cancer is not an exact science. Modern medicine 

has enabled us to eradicate breast cancer in a fraction of women but there is still 

need for more effective treatments. Chemotherapy options with less severe side 

effects for the patient are necessary, as well as the availability of safe chronic 

medications for preventing metastasis or relapse. 

Breast cancer is a heterogeneous disease that varies between individuals. 

Various factors affect the severity as well as the treatability of the disease. For 

example receptor status is a characteristic used to selected targeted drugs. Cells 

that overexpress estrogen receptors (ER) bind estrogen hormones which 

promote cell growth. ER-positive/PR-positive (ER+/PR+) cancer is treatable with 
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hormone therapy, such as Tamoxifen as discussed below (reviewed (2)). 

Tamoxifen treated ER+ patients experience reductions in the risk of recurrence 

and mortality (reviewed (3)). However, ER-negative (ER-) cancer does not 

benefit by this mode of treatment, as its proliferation is due to other factors (4).  

Patients whose cells are negative for ER, PR and HER2 are classified as 

having triple negative breast cancer (TNBC). TNBC is more difficult to treat, as 

the cells lack traditional specific receptor targets (5). Patients exhibiting TNBC 

have more aggressive tumors and a greater chance of recurrence and worse 

prognosis in the first four years after diagnosis, than patients whose cells are 

ER+, PR+ or HER2-positive (HER2+) (5,6).  

Treatments for breast cancer patients generally begin with tumor and 

lymph node biopsies to determine the extent of disease and characteristics of the 

tumor (7). Most patients then undergo adjuvant therapy followed by surgical 

procedures to remove tumors and affected lymph nodes. Surgery may be 

preceded by chemotherapy to reduce the amount of tissue removed (7). 

Afterwards, patients receive radiation therapy, chemotherapy or hormone therapy 

to ablate remaining cancer cells (8). The types of drugs used for treatment vary 

depending on the receptor status of cells, stage of cancer progression, and the 

degree of metastasis (8,9).  

Current goals in breast cancer research are to decrease the prevalence of 

breast cancer by improving early detection, increasing the effectiveness of 

treatments and decreasing relapse. 
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1.2 Breast Cancer Treatment Targets and Drugs 

Breast cancer drugs currently on the market generally work in one of two 

ways: by interfering with cytoskeleton function, which is essential to cell growth 

and division or by blocking the availability of growth hormones (e.g. estrogen) to 

the cell. Breast cancer drugs can take advantage of these known targets to 

specifically interrupt a cancer cell’s growth and proliferation.  

Overexpression of the HER2/neu (human epidermal growth factor 

receptor 2) gene is found in about 30% of breast tumors (10). Excess HER2 is 

associated with malignancy and decreased survival rates in breast cancer 

patients (reviewed (11,12)). HER2 is involved in regulating cell growth and 

differentiation signaling pathways, and overexpression of HER2 protein leads to 

uncontrolled cell growth (11,13). The HER2 gene encodes a cell surface 

glycoprotein which has tyrosine kinase activity (14,15). Tyrosine kinases 

phosphorylate proteins, which activate phosphatidyl inositol 3-

phosphokinase/protein kinase B (PI3K/Akt) signaling pathways (reviewed (16)). 

The PI3K/Akt signaling pathway controls normal cellular activities that are 

inappropriately balanced in tumors such as cellular proliferation and migration 

(16,17). Increased tyrosine kinase activity is implicated in a number of different 

cancers, including breast cancer (16,17). In breast cancer, HER2 gene 

amplification is associated with more aggressive tumors, greater recurrence rates 

and increased mortality (18–21).  

Patients with HER2/neu-positive cells generally receive treatment with a 

monoclonal antibody called Trastuzumab (Herceptin) (3,5,13,22). Trastuzumab 
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(Herceptin) binds to the human epidermal growth factor receptor 2 

(HER2/neu/erbB-2) and inhibits receptor dimerization and activation of the 

PI3K/Akt pathway (13,23–25). This drug has become a recognized standard 

treatment for HER2 positive (HER2+) breast cancer patients, and is usually used 

in combination with, or after chemotherapy (13,24,26). Much like ER+ breast 

cancer, HER2+ cancer can be more specifically targeted using Trastuzumab 

(5,11). 

Another class of anti-cancer drugs useful in treating breast cancer work by 

blocking estrogen interaction with the cell, either by competing for estrogen 

receptors or preventing conversion of androgen to estrogen, as with Letrozole 

(commercially known as Femara) (27). Tamoxifen, a commonly used estrogen 

receptor antagonist, can be used long term in postmenopausal patients as a 

tumoristatic drug (2). This drug only works in estrogen receptor positive (ER+) 

breast cancers, so it is not effective for all cases of breast cancer(2). In ER+ 

breast cancer cells, estrogen binds to the estrogen receptor, activating a cascade 

of events that enable the cell to grow. When Tamoxifen is administered, it is 

metabolized by the liver into active metabolites that have a great affinity for the 

estrogen receptor (28). The active metabolites compete with estrogen for 

receptor binding, preventing estrogen mediated gene transcription and cancer 

cell growth (28).  

Endocrine therapies, like Tamoxifen, are often used to treat individuals 

with early stage or metastatic breast cancer, as these drugs affect cells all over 

the body (7). Because these drugs affect all cells, they can create adverse side 
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effects. For example, Tamoxifen has been shown to induce liver cancer in rats 

and increase the incidence of other cancers in humans (29,30). Treatment with 

Tamoxifen for breast cancer induces estrogen-like effects on the uterus and is 

linked to an increased risk for uterine cancer due to the drug's agonistic effect on 

G-protein coupled estrogen receptors (GPER) (31–33).  

The lack of targetable receptors in TNBC cells creates a unique challenge 

for cancer drug development. Current work on targeted therapies for TNBC 

employ PARP (poly ADP-ribose polymerase) inhibitors (7). PARP is an enzyme 

that repairs damaged DNA. Inhibiting PARP activity prevents cancer cells from 

repairing damaged DNA causing cells to undergo apoptosis and die instead of 

proliferating.  

Paclitaxel, a Food and Drug Administration (FDA) approved drug 

commercially known as Taxol, is used to treat ovarian, breast, lung, head and 

neck cancers (34). Taxol belongs to a group of agents called taxanes, which 

include doclitaxel and paclitaxel. These agents do not target specific receptors, 

but instead stabilize microtubule filaments in the guanosine diphosphate (GDP) 

state preventing microtubules from disassembling, and inhibiting complete 

mitosis which results in apoptosis of the cell (35).  

The problem with all of these treatments is that they are not absolutely 

cancer cell-specific. Many anti-cancer drugs affect healthy cells as well as the 

cancer cell targets, which leads to undesirable side effects for the patient. 

Additionally, due to the various manifestations of breast cancer, a treatment that 

works for one patient may work only partially or not at all in another patient. 
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Cancer drug resistance is a common problem (reviewed (36–38)). When a 

cancer patient experiences relapse, the same drugs that lead to remission in 

previous treatments may no longer be as effective in subsequent tumors. The 

cancerous patient cells have developed resistance against drugs that kill cancer 

in one specific way, e.g. microtubule growth inhibition. The survival rate of 

relapsed patients is low, and finding anti-cancer treatments that have different 

mechanisms of action than their previous treatment is important. Overcoming 

resistance by discovering new targets and discovering new cancer treatments is 

important in cancer drug discovery.  

In recent years, there has been a developing trend towards individualized 

cancer treatment plans. After initial breast cancer diagnosis, tests are conducted 

to determine the stage of cancer as well as its specific characteristics (7). Biopsy 

samples can be used to determine whether the cancer has specific receptors to 

serve as drug targets. This approach is still only as powerful as the knowledge of 

modified pathways involved in cancer, and drugs available for targeting said 

modifications. New targets are in development. Increasing the number of drugs 

available will allow for more efficient treatments and greater survival rates of 

cancer patients.  

1.3 Drug Repurposing 

 A large area of cancer research is dedicated to the development of new 

drugs to modify and change cellular pathways in cancer cells. Nonetheless, even 

the most effective treatment against cancer cells must be verified in multiple cell 

lines, tested in in vivo models, and undergo animal and human testing for safety. 
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Finally, it must meet strict requirements set by the FDA for use in humans. The 

process required to verify that new compounds are safe and effective is long and 

complicated. Synthesis, biological testing, and pharmacological screening of new 

compounds can take 5-8 years, after which, compounds must still undergo a 

three stage process in order to be deemed safe, possibly adding on another eight 

years before being available for clinical use (39). “Fast forwarding” through any 

step of this process can cut years off of the time needed for new 

chemotherapeutics to be put into routine use. Repurposing previously FDA 

approved drugs for use in cancer treatment is one way to expedite this process. 

FDA approved drugs have already been evaluated for human use. The 

main concern with unconventional use of a drug is using it in concentrations that 

will not cause long lasting harm to the patient, as some treatment regimens may 

require dosages far above the pre-determined safe concentration. According to 

MediLexicon, there are 148 FDA approved drugs available for cancer therapy 

(27). Many of these drugs are designed for very specific cancers and several, 

such as the non-steroidal anti-inflammatory drugs (NSAIDs), are used for treating 

pain associated with cancer.  

1.4 Ketorolac 

Of particular interest is ketorolac tromethamine, marketed as ToradolTM or 

AcularTM. Ketorolac is an FDA-approved NSAID used for treating pain and 

inflammation (40,41). In a clinical setting, this drug is administered as a racemic 

mixture of (R)- and (S)- enantiomers via an initial intravenous (IV) or 

intramuscular (IM) route, then continued orally for no more than five days (42). 
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Ketorolac is contraindicated for long-term use due to its association with 

increased gastrointestinal ulcers, bleeding, and perforation as well as liver and 

renal failure (42). On the other hand, short-term administration of ketorolac has 

demonstrated significant beneficial effects for patients over alternative post- or 

peri-operatively administered pain medications. Recent data have shown that 

when ketorolac is administered perioperatively, breast cancer patients are less 

likely to experience an early relapse and there is an increase in survival after 

surgery (43). Evidence has also shown that perioperative ketorolac 

administration is correlated with improved survival in lung, and ovarian cancer 

patients (44,45). 

In a 2010 study, Forget et al. conducted studies comparing perioperative 

analgesics and anesthetics given to Belgian women who received mastectomies 

from a single surgeon. In these studies, women who had received ketorolac had 

superior disease free survival rates in the first few years after surgery, with the 

greatest differences observed during the 9-18 months after surgery (46). These 

studies were further analyzed by Retsky et al. who hypothesized that ketorolac 

reduces systemic inflammation and angiogenesis, interfering with the metastatic 

ability of circulating tumor cells (43,47). Without a suitable host environment, 

these circulating cells die off. Of note, Retsky et al. proposed that ketorolac could 

be of benefit to TNBC patients regardless of the current lack of targeted therapy 

for TNBC cells (43,47). 
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1.5 Potential Mechanisms of Action of Ketorolac in Breast Cancer Patients 

Although given clinically as a racemic mixture, ketorolac’s two 

enantiomers have differing functions. The S- enantiomer of ketorolac is a known 

cyclooxygenase (COX) inhibitor and useful for managing pain and inflammation 

(48,49). The R-enantiomer, originally thought to be inert, inhibits actin 

cytoskeleton regulators such as Rac1 and Cdc42 GTPases and relieves pain 

independent of COX inhibition (40,50,51). 

(S)-ketorolac inhibits COX enzymes and, consequently, is primarily 

responsible for the ulcerogenic activity associated with racemic ketorolac (52,53). 

The COX enzyme family consists of two enzymes, COX-1 and COX-2. COX-1 is 

found throughout the body and is responsible for synthesizing prostaglandins 

from arachidonic acid (53). Prostaglandins have an active role in 

vasoconstriction, vasodilation and immunosuppression, a protective role in 

maintaining the stomach and gastrointestinal lining, and ensure proper renal 

function in compromised kidneys (53–58). Prostaglandins also promote 

malignant tumor development and growth (53,54,58–60). COX-2 is found mainly 

in areas of inflammation, as well as the brain and spinal cord (54).  COX-2 

contributes to the synthesis of prostaglandins in inflamed tissues and malignant 

tumors and has been found to promote growth factor and matrix 

metalloproteinase (MMP) expression (53,61). MMPs enable tumor cells to invade 

basement membranes, penetrate blood vessels and metastasize (62).  

Inflammation accompanying breast cancer surgery is believed to 

exacerbate the escape of tumor stem cells and contribute to recurrent disease 
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(47,63). (S)-ketorolac may decrease tumor metastasis by acting as a COX 

inhibitor, thus decreasing inflammation. Cancer patients are known to have 

circulating tumor cells (CTCs) (64,65). In an inflammatory environment, the 

vasculature becomes “leaky” enabling CTCs to extravasate and move into distant 

tissues (47,63). Administering an NSAID such as ketorolac, perioperatively, may 

decrease tumor metastasis by acting as a COX inhibitor, thus decreasing the 

inflammatory response and preventing the escape of CTCs from the vasculature. 

In addition, ketorolac may prevent angiogenesis, which is another contributing 

factor to metastatic growth of CTCs (47,63). However, evidence shows that (R)-

ketorolac may also be playing an important role in preventing metastasis 

(45,50,51). 

 (R)-ketorolac interferes with the activation of Rho GTPase signaling proteins 

Rac1 and Cdc42 (40,45,50). Small Rho GTPases such as RhoA, RhoC, Rac1, 

and Cdc42, regulate cell growth, invasion, motility, and metastasis and are often 

found overexpressed in many cancers including breast cancer (66–70). Rho 

GTPases are particularly found in highly metastatic breast tumors and 

overexpression is associated with greater cancer severity (67,68,70). Aberrant 

Rho-GTPase signaling rather than mutation is responsible for cancer cell growth 

and progression.  

The (R)- enantiomer of ketorolac exhibits analgesic properties with little to 

none of the ulcerogenic properties seen with (S)-ketorolac (48,49). Unlike (S)-

ketorolac, (R)-ketorolac does not have an effect on COX activity, which 

consequently allows the enzyme to maintain its protective role in the stomach 
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and gastrointestinal linings (48,52). In one study investigating the ability of 

compounds to inhibit COX, (S)-ketorolac outperformed (R,S)-ketorolac, followed 

by a number of other COX inhibitors and (R)-ketorolac at the very end of the list, 

with the least amount of COX inhibition observed (71). However, (R)-ketorolac is 

not pharmacologically inactive, as previously thought. In epithelial cancer cells, 

(R)-ketorolac is able to inhibit Rac1 and Cdc42 activity in a comparable manner 

to established Rac1 and Cdc42 inhibitors (45,50,51). Docking studies have 

suggested that (R)-ketorolac’s configuration enables the carboxylate moieties of 

the molecule to chelate magnesium and disables the DOCK GEF’s ability to bind 

to Rac1 and Cdc42 (51). (R)-ketorolac has been shown to selectively bind Rac1 

and Cdc42 (51). These Rho-GTPases are necessary for the formation of 

lamellipodia and filapodia formation which enable a cell to migrate through its 

environment, invade basement membranes, and metastasize to distant locations 

(72,73).  

1.6 GTPases in Breast Cancer 

 (R)-ketorolac interferes with the activation of signaling proteins Rac1 and 

Cdc42 within the Rho GTPase family (40,45,50). Rho GTPases are enzymes that 

act as regulatory switches by binding to guanosine triphosphate (GTP), 

hydrolyzing it to guanosine diphosphate (GDP), effectively switching a signaling 

mechanism from an active “on” form to an inactive “off” form and back again 

(74,75).  

 GTPases play an important role in breast cancer. Small Rho GTPases 

have roles in cell growth, invasion, motility, and metastasis of breast cancer cells 
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(reviewed (66)). Most often, overexpression rather than mutations of Rho 

GTPases are found in cancerous tissue (reviewed (66)). Only one Rho GTPase 

genetic mutation, a mutation in RhoH, has been implicated in human cancer 

(76,77). RhoA, RhoC, Rac1, and Cdc42, are overly abundant in multiple cancers, 

including breast cancer (67–70). Rac1b, a splice variant of Rac1, is 

overexpressed in colon and breast cancer and is found primarily in the GTP-

bound active form because it is self-activating and thus GEF independent 

(69,78). Overexpression of a constitutively active GTPase can lead to 

uncontrolled cell growth and metastasis. Although Rac1b expression is increased 

in colorectal tumors when compared to normal colonic mucosa, and studies have 

found greater levels of Rac1 in malignant breast tissue, when compared to 

benign breast tissue, Rac1b expression levels are not different between 

malignant and benign breast tumor tissue (69,78,79). Another mutant, Rac1 

(P29S) is a fast cycling mutant, meaning that it is more often found in a GTP 

bound, or active state, due to increased GDP disassociation (80). The Rac1 

(P29S) mutation is found in breast cancer as well as head and neck cancers, and 

melanoma (80,81). Integral to the signaling cascade that activates cell growth 

and motility, Rho GTPases are often overexpressed in highly metastatic breast 

tumors and have been found to correlate positively with breast cancer severity 

(67,68,70).   
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1.7 Rho GTPases and Their Regulation 

 Changes in GTPase regulators, GEFs, GAPs and GDIs, cause Rho GTPases 

to be aberrantly regulated through mutation or GTPases splicing (Rac1b), 

altering the ability of cells to properly regulate the cytoskeleton leading to 

uncontrolled cell growth and migration. Rho GTPases are regulated by three 

different classes of proteins called guanine nucleotide exchange factors (GEFs), 

GTPase-activating proteins (GAPs) and guanine nucleotide dissociation 

inhibitors (GDIs) (82). GEFs, GAPs and GDIs function as Rho-GTPase 

regulators, cycling GTPase through active and inactive forms. GEFs facilitate the 

exchange of GDP for GTP; GAPs coordinate the dephosphorylation of 

nucleotides, converting GTP to GDP, and GDIs inhibit GEFs and GAPs from 

acting on Rho-proteins preventing the exchange of GTP and GDP (75). 
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Figure 1.1 The Rho-GTPase Regulation 

(adapted from (74,82)) 

 In their inactive form, GTPases are mainly located in the cytoplasm with their 

C-terminal tail bound by GDIs, which is necessary for plasma membrane 

localization (74,82). Dissociation from GDIs allows GTPases to relocate to the 

plasma membrane (74,82). External stimuli to membrane receptors induces the 

activation of membrane bound GTPases by GEFs which then causes GTPases 

to bind to effector proteins (74,82). This binding of effector proteins leads to 

downstream signaling which can be subsequently turned off by the 

dephosphorylation and inactivation of GTPases by GAPs (74,82).     
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For example, the cell surface tyrosine-kinase receptor, HER2, interacts 

with ligands and dimerizes (11). This signaling also increases GTPase cycling 

and increases the active status of GTPases. HER2 dimerization recruits a GEF, 

to the cell surface which exchanges GDP for GTP, activating Rac1 (11,83). Rac1 

binds to an effector protein, such as p21-activated serine/threonine kinase 1 

(PAK1). PAK family members phosphorylate multiple downstream proteins 

involved in breast cancer progression (reviewed (84)). One target of PAK1 is 

mitogen-activated protein kinase (MAPK) which itself is involved in multiple pro-

cancer functions such as proliferation, differentiation, motility, apoptosis, and 

survival (reviewed (84)).  
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Figure 1.2 Downstream Effectors and Cancer Implications 

An activated receptor (HER2, ER) activates GEFs (Tiam1, p190RhoGEF), 

phosphorylating and activating Rho-GTPases (Rac1, Cdc42, RhoA). Rho-

GTPases activate effector proteins (PAK, ROCK) that then activate multiple 

cellular proteins (MAPK, VEGF) involved in cancer (growth, motility, 

angiogenesis, survival, differentiation).  
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 Rho GTPases play important roles in actin and cytoskeleton regulation. In a 

cancer cell, regulation of cytoskeletal structure, adhesion, spreading, and polarity 

are vital to enabling the cell to migrate and metastasize (74,75,82,85). There are 

six distinct groups of Rho GTPases: the Rho, Rac, Cdc42-like, Rnd, RhoBTB, 

and Miro proteins (82). Of these, the best characterized, and the focus of our 

studies, are Cdc42, RhoA, and Rac1. 

 Cdc42 is responsible for cell polarity and regulates actin filament assembly, 

forming filopodia at the cell periphery (86–88). While Cdc42 is not directly 

responsible for cell growth or protrusion, it helps to direct cellular asymmetry 

(74). This asymmetry creates a leading edge for the rest of the cell to follow 

during activities such as migration (74). Directed activity towards the leading 

edge of the cell enables the cell to move in one unified direction. Increased 

protein levels of Cdc42 have been observed in breast cancer (67,68). However, 

an increase in Cdc42 proteins does not correlate with an increase in metastatic 

potential (89).  

 RhoA plays a role in contractile actin-myosin bundle (stress fiber) formation 

(88,90). RhoA’s contractile activity on the actin-myosin filaments enable the 

trailing edge of the cell to be pulled along as the front of the cell protrudes 

forward during cell movement (91). RhoA is also involved in signaling pathways 

such as Rho-associated coiled-coil-containing protein kinase (ROCK) activation 

pathway and the PI3-K/AKT pathway, which are essential for the actin 

polymerization during cell locomotion, and cell survival and expression of cell 

proliferation genes respectively (92). Increased amounts of RhoA protein are 
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found in advanced breast tumors while little RhoA is detected in surrounding 

tissues (67,68). Experiments injecting anti-RhoA silencing RNA (siRNA) into 

xenografted MDA-MB-231 breast tumors directly target RhoA containing tumor 

cells, and have shown great promise in inhibiting growth and angiogenesis (93).  

 Rac1 regulates actin polymerization at the cell periphery which creates 

lamellipodia and cell membrane ruffling (72,88). Rac activity at the leading edge 

of the cell allows it to form membrane protrusions which drive cell movement 

during invasion and migration (74). In breast cancer, there is a direct correlation 

between increased Rac1 protein and metastatic potential (89). Furthermore, 

Rac1 is overexpressed in malignant breast tissue when compared to benign 

breast tissue, and patients with more aggressive and recurring breast cancer 

have increased membrane localization of Rac1 (67–69).  

 One Rho GTPase regulator implicated in breast cancer is deleted in liver 

cancer 1 (DLC-1). The deregulation of DLC-1 is involved in the formation and 

progression of breast tumors (94). DLC-1 is a Rho GAP specific for RhoA and 

Cdc42, and has an important role in actin filament formation and focal adhesions 

(95). The DLC-1 gene acts as a tumor suppressor gene in breast cancer and 

genomic deletion of DLC-1 is associated with a variety of cancers including lung, 

breast, prostate, kidney, colon, uterus, ovary, liver and stomach (reviewed 

(94,96)). In addition to suppressing tumor growth, DLC-1 has been shown to be a 

metastasis suppressor in breast cancer cells (97). When DLC-1 is artificially 

overexpressed in vitro, a decrease in cell growth and colony formation can be 

observed, while the introduction of DLC-1 cDNA in vivo abolishes the 
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tumorigenecity of cancer cells in nude mice, supporting its role as a tumor 

suppressor (94,98).  

 Another Rho GTPase regulator is T-cell lymphoma invasion and metastasis-

inducing protein 1 (Tiam1) (99). Tiam1 is a fast-cycling GEF exchange factor for 

Rac, which is responsible for lamellipodia formation necessary for cell movement 

during migration and invasion (74,100). Tiam1 controls the functioning of cell-cell 

adhesions including tight junctions and E-cadherin based adherens junctions 

(101,102). Any disruption in these cell-cell adhesions allows tumor cells the 

opportunity to invade the circulatory system and metastasize. Like most 

biological systems, maintaining proper function regarding Tiam1 is a fine 

balancing act. Loss of Tiam1 causes cells to undergo epithelial mesenchymal 

transition (EMT), which results in the loss polarity and cell-cell adhesion 

properties leading to invasive tendencies (101,102). However, increased Tiam1 

also correlates to an increase in the invasiveness and advanced degree of 

progression particularly in breast cancer (103,104).  

  While Rho-GTPases play important roles in tumorigenesis, it is imperative to 

consider upstream signaling proteins. For example, one experiment investigating 

Tiam1 function in mammary tumorigenesis crossed Tiam1 knockout (Tiam1-/-) 

mice with breast cancer prone HER2/neu or Myc mice (105). Mammary tumor 

formation was not affected in the Tiam1-/-;Myc mice, but it was impaired in the 

Tiam1-/-;neu crosses, suggesting a vital role for Tiam1/Rac interaction in 

HER2/neu tumors (105). 
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1.8 The PyMT Mouse Model of Breast Cancer 

 Simulating the intricacies of a living system in vitro is complicated, 

expensive and unfeasible. Manipulated animal models are important tools in 

scientific research and aid in understanding how cellular pathways, drug 

treatments, etc. might function in a complex system. 

The mouse mammary tumor virus-polyoma middle T-antigen (MMTV-

PyMT) mouse model is a genetically engineered metastatic breast cancer model, 

functioning similar to human metastatic breast cancer both histologically and 

molecularly (106). Cancer in this mouse model is characterized by “short latency, 

high penetrance, and a high incidence of lung metastasis occurring 

independently of pregnancy and with a reproducible kinetics of progression” 

(107). Like human breast cancer, these mice gradually lose steroid hormone 

receptors such as the estrogen and progesterone receptors, and they 

overexpress HER2 and cyclin D1 which is associated with higher rates of breast 

cancer (13,108–110). Additionally, advanced cases of mammary gland tumors 

develop metastatic lesions in the lung and lymph nodes.  

“In the MMTV-PyMT mouse model, the mouse mammary tumor virus 

(MMTV) promoter drives the expression of Polyoma Middle T-Antigen (PyMT) in 

the mammary epithelium and other organs” (111). PyMT, a scaffold protein, 

binds and activates members of the tyrosine kinase family activating cellular 

signaling pathways including the Ras/Raf/MEK and PI3K/Akt pathways which 

play vital roles in cell growth (112,113). Activation of these signaling proteins 
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leads to mammary epithelium transformation and the appearance of multifocal 

mammary adenocarcinomas (111).  

In mouse mammary glands, terminal end buds form when the mouse goes 

through puberty and ovarian hormones are released (107). These terminal end 

buds invade the mammary gland fat pads forming branches (107). During 

pregnancy and lactation epithelial differentiation occurs and afterwards apoptosis 

and redifferentiation allow the epithelial cells to return to normal (107). The 

processes that allow the mammary gland to change for lactation and back again 

are the same processes that are exploited by cancerous cells to grow and invade 

tissue (107). Expression of PyMT causes transformation of the mammary 

epithelium independent of pregnancy related hormones. These changes result in 

the growth of adenocarcinomas in the mammary glands followed by metastasis 

to the lung and lymph nodes (106,111). The changes that occur in MMTV-PyMT 

mice during mammary gland tumor formation, including hyperplasia, adenoma, 

and early/late carcinoma are the same processes that occur in humans which 

makes this mouse ideal models for human breast cancer (114). 

1.9 Objective Study 

 The purpose of this study was to characterize a role for (R)-ketorolac as a 

breast cancer growth and metastasis inhibitor. Breast cancer is a deadly disease 

that can be difficult to treat due to its heterogenic nature and ability to develop 

resistance to available treatments. Racemic ketorolac has shown promise of 

being effective at preventing early relapse in breast cancer patients, but is 

contraindicated for long term use (43).  
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Using high throughput screening and cheminformatics approaches, the 

(R)- enantiomer of ketorolac was identified as a selective inhibitor for Rac1 and 

Cdc42 activation (51). Docking predictions of (R)-ketorolac on Rac1 and Cdc42 

suggest that the rotational configuration of (R)-ketorolac exposes carboxylate 

moieties which allows for the chelation of magnesium, leading potentially to 

nucleotide dissociation (disintegration of Rho-GTPase binding) (51).  

Recent work has shown that (R)-ketorolac directly inhibits Rac1 and 

Cdc42, but not RhoA, through an allosteric mechanism preventing invasion and 

metastasis in ovarian cancer (45,50). We hypothesize that (R)-ketorolac 

selectively inhibits Rac1 and Cdc42 activity in breast cancer, leading to a 

significant decrease in mammary tumor invasion and metastasis. Our focus on 

(R)-ketorolac will lead to the repurposing of an FDA approved drug as a new 

non-cytotoxic therapeutic for breast cancer.  
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Figure 1.3 Hypothesized Mechanism of Action of (R)-Ketorolac 

We hypothesize that (R)-ketorolac selectively binds to Rho-GTPases, Rac1 and 

Cdc42, preventing the binding of GTP and thus activation of downstream effector 

proteins involved in cell signaling pathways important in breast cancer cell 

invasion and migration.   
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2. THE EFFECTS OF KETOROLAC AND ITS ENANTIOMERS ON 

BREAST CANCER CELLS IN VITRO 

2.1 Introduction 

 Small molecule screening of the Prestwick Chemical Library® coupled 

with cheminformatics analysis has identified the (R)- enantiomer of ketorolac as 

having a binding affinity for members of the Rho-GTPase family (40). Racemic 

ketorolac is an NSAID routinely given to patients in a clinical setting to manage 

pain and inflammation (48). Patients receiving racemic ketorolac when 

undergoing tumor reduction surgery demonstrate an improved outcome in both 

ovarian and breast cancer cases (45,47,115). Until recently, assumptions were 

made that only the (S)- enantiomer of ketorolac had activity, while the (R)- 

enantiomer was inert (48,71).  However, recently (R)-ketorolac has been shown 

to be a selective inhibitor of Rac1 and Cdc42, affecting downstream signaling 

pathways involved in cellular invasion and migration in ovarian cancer cells (50). 

 GTPases are predicted to regulate proliferation and invasion. In a cell, 

growth and movement rely on the coordination of polymerization and 

depolymerization of actin and microtubule dimers that make up the cytoskeleton. 

This coordination is regulated by cell signaling pathways requiring the activation 

and deactivation of multiple signaling proteins, including Rho-GTPases. As 

discussed previously, Rho-GTPases Cdc42, RhoA, and Rac1 work together to 

direct actin polymerization near the leading edge of a cell for protrusion and 

forward movement, and depolymerize actin near the trailing edge of the cell for 

membrane retraction (74,72,88,91). These same actions, regulated by the same 
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Rho-GTPases are also important when directing the cytoskeleton in cell division 

during growth (75). Previous research has demonstrated the vital role played by 

Rho-GTPases in cell proliferation and invasion. When any one of these 

regulatory proteins is knocked out or disabled, there is a significant decrease in 

the ability of cells to proliferate and invade (reviewed (75)). Using (R)-ketorolac to 

bind to and inhibit Rho-GTPase proteins is predicted to interfere with 

coordination of the cytoskeleton, interfering with tumor cell proliferation and 

invasion, but not cell viability. 

(R)-ketorolac’s ability to inhibit Rho-GTPases in ovarian cancer cells, and 

the positive effects racemic ketorolac has on preventing relapse in ovarian and 

breast cancer patients, has prompted us to study the mechanism of action of (R)-

ketorolac in breast cancer cells. In this study we were interested in distinguishing 

the differences between (R)- and (S)- ketorolac on proliferation and invasion. 

Viability assays were conducted on breast cancer cell monolayers and MCAs 

using both an invasive breast cancer cell line, MDA-MB-231, and a non-invasive 

breast cancer cell line, MCF-7. Ketorolac’s interaction with normal cell cycle was 

assessed using flow cytometry. Colony forming assays were conducted to 

examine the effects of ketorolac on cell growth. Migration assays were performed 

to determine if ketorolac inhibited the migratory ability of breast cancer cells. 

Finally, MMP9, an enzyme involved in the breakdown of the extracellular matrix, 

was measured in ketorolac treated cells. 

 



www.manaraa.com

26 
 

2.2 Materials and Methods 

2.2.1 Materials 

 Ketorolac-tris salt was purchased from Sigma-Aldrich and made into 10 

mM stock aliquots in deionized (DI) water. (R)- and (S)- ketorolac enantiomers 

were purchased from Toronto Research Chemicals and reconstituted according 

to the package instructions. Etoposide was purchased from Trevigen. Taxol was 

purchased from Enzo Lifesciences. 

2.2.2 Cell Culture  

MCF-7 cells (non-invasive human breast adenocarcinoma) and MDA-MB-

231 (invasive human breast adenocarcinoma) cells were a generous gift from Dr. 

Kristina Trujillo (Department of Cell Biology and Physiology, UNM, Albuquerque, 

NM). MCF-7 and MDA-MB-231 cells were grown in Dulbecco’s Modified Eagle 

Medium (DMEM) (Sigma-Aldrich, St. Louis, MO) supplemented with 10% FBS 

(Atlanta Biologicals, Norcross, GA), 1% penicillin/streptomycin (Gibco, Grand 

Island, NY) and 1% Insulin-Transferrin Selenium-A (Gibco, Grand Island, NY). 

Cells were split 1:3 when they had reached 70-80% confluency. OVCA 433 cells 

(epithelial ovarian cancer cells) were provided by Dr. Robert Bast Jr., M.D. 

Anderson Cancer Center, Houston TX and grown in DMEM supplemented with 

10% FBS, 0.5% penicillin/streptomycin, and 1% L-glutamine (Gibco, Grand 

Island, NY), and 1% sodium pyruvate (Sigma-Aldrich, St. Louis, MO). Cells were 

split 1:4 when they had reached 70-80% confluency. All cell lines were incubated 

at 37⁰C and 5% CO2. 
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2.2.3 MCF-7 Monolayer and MCA Viability with Racemic Ketorolac  

MCF-7 cells were seeded at 15,000 cells/mL (100 µL/well) into flat bottom 

96-well plates, for monolayers, and into Lipidore U-bottom 96-well plates, for 

multi-cellular aggregates (MCAs), and incubated overnight at 37⁰C and 5% CO2. 

A 10 mM ketorolac stock in DI water was diluted with cell culture medium to a 

300 µM ketorolac stock. Eight stock treatments were further created by diluting 

the 300 µM ketorolac stock solution with cell culture medium. 50 µL of each stock 

treatment was added to respective wells, which already contained 100 µL of 

media for the final indicated concentrations. 

An 80 µM etoposide stock solution in cell culture media was used as a 

positive control, adding 50 µL into each well containing cells and 100 µL of cell 

culture media for final well concentrations of 40 µM etoposide. Cells were treated 

in quadruplicate, in both MCA and monolayer plates. The plates were tapped 

gently to mix and incubated for 48 hours. After the incubation period, 15 µL of 

10X PrestoBlue (Invitrogen, Carlsbad, CA) was added to each well, the plate was 

tapped gently to mix and incubated at 37⁰C. Well fluorescence readings were 

taken on a SpectraMax M2 plate reader at 2, 4, 6, and 24 hours. The experiment 

was repeated a total of three times using the 24 hour PrestoBlue time point. 

2.2.4 MCF-7 and MDA-MB-231 Monolayer Viability with Ketorolac 

Enantiomers  

MCF-7 and MDA-MB-231 cells were plated into 96-well plates at 15,000 

cells/mL (100 µL/well) and allowed to adhere overnight in 37⁰C and 5% CO2 

conditions. 300 µM stock solutions of each racemic ketorolac, (R)-ketorolac, and 
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(S)-ketorolac were made in supplemented DMEM media, and 240 µM stock 

solution of etoposide was made in supplemented DMEM media as a control. In 

quadruplicate, 50 µL of drug-free supplemented DMEM media was added to all 

wells designated as non-treated wells and empty wells, with no cells. 50 µL of 

each of the corresponding stock solutions were added to their respective wells 

for final well concentrations of 100 µM of each ketorolac treatment and 80 µM of 

etoposide treatment. The plate was tapped gently to mix and incubated for two 

days. After the incubation period, 15 µL of 10X PrestoBlue was added to each 

well and the plate was returned to the incubator. Well absorbency readings were 

taken at 2, 4, 6, and 24 hours. A one-way ANOVA statistical analysis with a 

Dunnett’s multiple comparison test was used to compare all treatment groups. 

This experiment was repeated three times. 

2.2.5 MCF-7 Cell Cycle with Racemic Ketorolac  

MCF-7 cells were seeded at 2.5 x 105 cells/mL with 1 mL/well into 24-well 

plates and allowed to adhere overnight. Ketorolac stock solutions were made in 

supplemented DMEM media at 10 µM, 30 µM, 100 µM, and 300 µM from a 10 

mM ketorolac stock and 0.5 µM taxol was used as a positive control.  

Old DMEM was removed and new DMEM containing ketorolac was added 

to the wells in triplicate at 1 mL/well. Cells were incubated for 48 hours then 

washed once with 1X PBS. A few drops of trypsin were used in each well to 

detach adherent cells then neutralized with DMEM. Samples were moved into 15 

mL conical tubes, pelleted, and supernatant was removed. Each sample was re-

suspended in 5 mL of PBS and centrifuged at 2500 rpm for 5 minutes as a 
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washing step. Supernatant was again removed, samples were re-suspended in 1 

mL of freshly made propidium iodide (PI) staining solution and incubated for 30 

minutes. PI dye was made by mixing 20 mL of 0.1% Triton X-100 in 1X PBS, 40 

µL DNAse-free RNAse-A (100 mg/mL in PBS) (2 mg total) and 800 µL of 500 

µg/mL PI stock. Samples were analyzed on a Becton Dickinson FACScan flow 

cytometer (Immunocytometry Systems) at 20,000 events. Three independent 

experiments were conducted and a two-way ANOVA with a Bonferroni post-test 

was used to calculate significance.  

2.2.6 Colony Forming Assays – MDA-MB-231 

 MDA-MB-231 cells (500 cells/mL) were plated in a 24-well plate at 1 

mL/well and incubated in 37⁰C and 5% CO2 conditions to adhere overnight. Cells 

were treated in triplicate with either 100 µM racemic ketorolac or the same 

volume of cell culture media as a control. The cells were allowed to grow for 16 

days after treatment. Cells were replenished with fresh culture media and drug 

on day 6.  Intermittently throughout the study, three areas of each well were 

imaged with the 4X objective and the number of colonies observed in the three 

images for each well was recorded. Image J software was used to calculate the 

total area of colony growth for each well. Total area and total colony number per 

well were calculated and results from the three wells per treatment were 

averaged. Results were normalized to the placebo control. 

2.2.7 Invasion Assays – MDA-MB-231 

 Invasion assays were conducted using a Cultrex® 3-D Spheroid Cell 

Invasion Assay kit (Trevigenn Gaithersburg, MD) and MDA-MB-231 cells. Cells 
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were plated and treated according to the manufacturer’s protocol. These cells did 

not receive any treatment, as this was a test to see if the cells had invasive 

properties. MCAs were imaged over the course of 7 days.  

2.2.8 Migration Assays – MCF-7 and MDA-MB-231 

MCF-7 cells (5 x 104 cells/mL) and MCF10A cells (5 x 104 cells/mL) were 

grown in 8 micron pore Boyden chamber inserts (Becton Dickinson Labware). 

Cells were serum deprived for 24 hours before treating with 10 µM, 30 µM, 100 

µM, 300 µM ketorolac or 50 µM NSC23766 (Tocris Bioscience) as a control, 20 

nM EGF was added to half of the wells. Cells were allowed to migrate for 48 

hours and non-migratory cells were removed. Migratory cells were fixed in ice-

cold 100% methanol and stained with 0.02% crystal violet in 10% ethanol. 

Migratory cells were imaged and counted on an Olympus 1X70 inverted 

microscope. The total number of migratory cells present in three separate images 

per membrane were manually counted and averaged. Each migration assay was 

repeated a minimum of three times and significance was determined using a 1-

way ANOVA test. This work was performed in the Hudson lab by S. Ray Kenney. 

2.2.9 Zymography – MMP Expression 

Sample Preparation  

MCF-7, MDA-MB-231, and OVCA 433 cells were seeded into 6-well plates 

at 5 x 105 cells/mL at 1 mL/well and allowed to grow to 80% confluence in 37⁰C 

and 5% CO2 conditions. Cells were serum deprived by washing in PBS and 

replacing media with a low serum media containing 1% Bovine Serum Albumin 

(BSA) for at least 24 hours before adding ketorolac treatments. Cells were 
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pretreated with 0 µM, 10 µM or 100 µM ketorolac. The plates were incubated for 

two hours and then half of the wells received 10 nM EGF treatments. The plate 

was incubated for 24 hours then conditioned media and cell lysates were 

collected on ice. Media from each sample was transferred to epitubes and 

centrifuged at 1,000 g for 10 minutes to pellet cell debris. Aliquots of the 

centrifuged media were transferred into new epitubes and kept at -80⁰C until 

needed for further analysis. Sample wells were washed twice with cold PBS and 

then 70 µL of 0.1% Triton-X100 in PBS was added to each well and the plate 

was rocked at 4⁰C for 30 minutes to lyse cells. Lysate was scraped from the 

wells and moved to epitubes for 10 seconds of probe sonication using a Branson 

Sonifier Cell Disruptor 200, then centrifuged for 10 minutes at 10,000 g at 4⁰C. 

Supernatant was collected and stored at -80⁰C until needed for BSA protein 

assays. BSA protein assays were conducted to determine lysate protein 

concentration and thus relative media protein concentration as described in the 

Pierce Protein Assay Kit protocol.  

Gel Preparation and Electrophoresis  

Samples were run on a 10% SDS-polyacrylamide (Biorad) gel containing 

1.5% (w/v) gelatin (Sigma G-2625 gelatin 175 bloom). Conditioned medium (10 

µL), collected earlier from treated cells was combined with 4X non-reducing 

sample buffer (4.6 mL dH2O, 0.5 mL 1 M Tris pH 7.4, 1.5 mL glycerol, 0.8 mL 

20% SDS, 25 mg bromophenol blue) in a 1:3 sample to sample buffer ratio. Each 

sample was loaded on the gel along with a stained molecular weight (MW) 

marker. Gels were run on a Western blot apparatus at 95V until the bands 
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migrated through the stacking gel, then at 125V until the bands were near the 

bottom of the gel. Once the run was finished, gels were incubated for 30 minutes 

at room temperature in renaturing buffer (2.5% Triton X-100 (v/v) in dH2O), 

changed to developing buffer (50 mM Tris, pH 7.6, 0.2 M NaCl, 5 mM CaCl2, 

0.2% (w/v) Brij-35, dH2O pH 7.6) for 30 minutes and then left in fresh developing 

buffer for 24 hours at 37⁰C. Gels were then stained in 0.1% PhastGel Blue R 

(Sigma) in acetic acid for 30 minutes and destained in 10% acetic acid in dH2O 

overnight. Proteinase activity was indicated by the presence of zones of staining 

inhibition. Gels were imaged on a FluorChem R (ProteinSimple, San Jose, CA) 

and densitometry was analyzed using ProteinSimple AlphaView 3.4 software. 

Each experiment was repeated a minimum of three times. 

2.3 Results 

2.3.1 MCF-7 Monolayer and MCA Viability with Racemic Ketorolac  

Cell viability assays were performed on MCF-7 breast cancer cell lines to 

determine if racemic ketorolac affected viability. In both MCF-7 monolayers and 

the more organotypic multicellular aggregates (MCAs), ketorolac had no effect on 

cell viability after 48 hours of treatment. Etoposide, a DNA-topoisomerase II 

inhibitor known for inhibiting cell division by causing DNA strand breaks, was 

used as a positive control (116,117). Varying incubation times with PrestoBlue 

revealed the optimal time point at which to take plate readings. Incubation with 

PrestoBlue for 24 hours was used on all subsequent assays. A one-way ANOVA 

statistical analysis was used to compare all treatment groups. The etoposide 

treatment was the only group found to be significantly different from the control 
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with a p value < 0.05. Visual inspection of the cells showed little to no changes in 

morphology in cell density or MCA structure when comparing the non-treated and 

100 µM ketorolac-treated cells.  
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Figure 2.1 MCF-7 Viability with Racemic Ketorolac on MCAs and 

Monolayers at Multiple Time Points  

Viability assays were conducted on MCF-7 monolayers (A) and MCAs (B). 

Cells were treated for 48 hours and incubated with PrestoBlue at multiple 

time points to determine the optimal PrestoBlue incubation time. Etoposide 

was used as a positive control and was significantly different from the 

ketorolac treated cells (p < 0.05). There was no a change in cell viability with 

ketorolac treatment concentrations up to 100 µM. Twenty-four hours was 

chosen as the optimal PrestoBlue incubation time due to the small variability 

in relative fluorescence when compared to other time points.  
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Figure 2.2 MCF-7 Viability on MCAs and Monolayers with Racemic 

Ketorolac - Ketorolac has no effect on the viability of MCF-7 monolayer or 

MCA cells.  

MCF-7 monolayers (A) and MCAs (B) were treated with ketorolac for 48 hours. 

Representative images show no difference in cell morphology. Etoposide (80 µM) 

was added to MCF-7 monolayers and MCAs for 48 hours as a positive control. 

Cell viability was assessed using PrestoBlue and a colorimetric plate reader as 

described in the methods. A one-way ANOVA was used to calculate significance.   
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2.3.2 MCF-7 and MDA-MB-231 Monolayer Viability with Ketorolac 

Enantiomers at Varying PrestoBlue Incubation Times  

MCF-7 and MDA-MB-231 monolayer cells were treated with either 100 µM 

racemic ketorolac, (S)-ketorolac, (R)-ketorolac, or 80 µM etoposide. In MCF-7 

monolayers, at the 2, 4, and 6 hour PrestoBlue time points, (S)-ketorolac had a 

statistically significant increase in fluorescence from the untreated control with a 

p < 0.05. At 24 hours incubation with PrestoBlue, (S)-ketorolac treatment was no 

longer statistically different from the untreated control. Racemic and (R)-ketorolac 

treatments in MCF-7 monolayers were not different from the untreated control at 

any of the PrestoBlue incubation time points.  

None of the ketorolac treatment groups were statistically different from the 

control group in MDA-MB-231 monolayers at any of the incubation time points. In 

both experiments, etoposide was statistically decreased from the untreated 

control at all PrestoBlue time points, with p-value of p<0.05. A one-way ANOVA 

statistical analysis with a Dunnett’s multiple comparison test was used to 

compare all treatment groups. It is worth noting that the etoposide treatment 

group’s relative fluorescence (an indication of cell viability) was about half that of 

the normalized control group in the MCF-7 cells but much closer to about 75% of 

the control group in the MDA-MB-231 cells. As MDA-MB-231s are a more 

aggressive cell line than MCF-7s, this may indicate a greater resistance to 

topoisomerase II inhibitors.  
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Figure 2.3 MCF-7 Monolayer Viability with Ketorolac Enantiomers  

Racemic ketorolac and its enantiomers are non-cytotoxic to MCF-7 monolayers 

at 100 µM concentrations. Cell viability with (S)-ketorolac treatment was 

significantly greater than other treatments at 2, 4, and 6 hours incubation with 

PrestoBlue but at 24 hours fell within the same range as the other treatments. 

Etoposide significantly decreased cell viability at all time points.   
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Figure 2.4 MDA-MB-231 Monolayer Viability with Ketorolac Enantiomers 

 Racemic ketorolac and its enantiomers are non-cytotoxic to MDA-MB-231 

monolayers at 100 µM concentrations. Etoposide significantly decreased cell 

viability at all time points. 
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2.3.3. Cell Cycle in MCF-7, and MDA-MB-231 Cells Treated with Ketorolac  

 Cell cycle analysis was performed using flow cytometry to determine if 

racemic ketorolac causes cell cycle arrest and if it was dose dependent. When 

cells were treated with 10, 30, 100 and 300 µM ketorolac, there was no change in 

the cell cycle phase populations when compared to the non-treated (NT) control 

group. About 20% of cells were in Go, 10% in S, and 70% in G2/M phase in MCF-

7 cell lines. In MDA-MB-231 cells, about 30% of cells were in Go, 60% in S, and 

10% in G2/M phase. Paclitaxel, a mitotic inhibitor, was used at 0.5 µM as a 

positive control and showed statistically significant changes in cell cycle when 

compared to control treatments. In MCF-7 cell lines, the paclitaxel treated cells 

had a greater percentage of cells in the Go phase, and fewer cells in the G2/M 

phase, while there was no difference between any of the treatment groups for the 

S phase of cell cycle.  In MDA-MB-231 cells paclitaxel treated cells had a greater 

percentage of cells in the Go phase, and less cells in the S phase, while there 

was no difference between any of the treatment groups for the G2/M phase of cell 

cycle. Significance was determined using a two-way ANOVA analysis with a 

Bonferroni post-test. Significant differences had p-values of p < 0.001. 
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Figure 2.5 Ketorolac Does Not Change Cell Cycle of MCF-7 Cells at 
Concentrations Up To 300 µM 

MCF-7 cells were treated with ketorolac and cell cycle was analyzed using flow 

cytometry. Ketorolac does not arrest the cell cycle in MCF-7 cells at 

concentrations up to 300 µM. Ketorolac treated cells have the same percent of 

cells in each phase of the cell cycle as the NT control. Taxol was used as a 

positive control and had a significant percent of cells arrested in the Go phase of 

the cell cycle when compared to the NT control.  
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Figure 2.6 Ketorolac and Its Enantiomers Do Not Affect Cell Cycle in MCF-7 

and MDA-MB-231 Cells at 100 µM Concentrations 

MCF-7 (A) and MDA-MB-231 (B) cells were treated with 100 µM of ketorolac or 

ketorolac enantiomers and cell cycle was analyzed using flow cytometry. In MCF-

7 and MDA-MB-231 cells, racemic ketorolac and its enantiomers did not cause 

cell cycle arrest. The Taxol control had a significant percent of cells arrested in 

the Go phase of the cell cycle when compared to the NT control. 
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2.3.4 Colony Forming Assays – MDA-MB-231 

 MDA-MB-231 cells were treated with 100 µM ketorolac and imaged for 

colony formation over 16 days. The total number of colonies formed reached a 

peak at day 6 in both placebo and ketorolac treated cells, with the placebo 

treated cells forming more individual colonies than the ketorolac treated cells. As 

the experiment progressed, individual colonies merged into larger, single 

colonies, resulting in fewer total numbers of colonies counted. By day 16, many 

of the cells had died and there was only cell debris floating in the media. The 

total area of colony formation increased over the course of the study and then 

decreased at day 16 due to cell death from age. Overall, the placebo cells had 

more growth than the ketorolac treated cells. Ketorolac treatment inhibited MDA-

MB-231 cell colony formation and growth. These assays were repeated a 

minimum of three times and analyzed using at two-way ANOVA. Although trends 

were observed, changes in colony formation over time were not significant 

between treatment groups. 
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Figure 2.7 Ketorolac Inhibits MDA-MB-231 Colony Formation 

MDA-MB-231 cells were plated sparsely, treated with 100 µM racemic ketorolac, 

and imaged for 16 days. The number of individual colonies formed, increased 

and then slowly decreased over time as multiple colonies merged onto a single 

larger colony. Placebo treated cells grew greater numbers of colonies than 

ketorolac treated cells (A). The total area of colonies increased over time but 

ketorolac treatment inhibited total area growth of colonies. (B). Representative 

images are shown (C). 
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2.3.5 Invasion Assays – MDA-MB-231 

 MDA-MB-231 cells were plated according to protocol instructions using 

the Cultrex® 3-D Spheroid Cell Invasion Assay kit (118). In the kit’s example, 

MDA-MB-231 MCAs that did not receive matrix remained a similar size to the 

starting MCA. MDA-MB-231 MCAs that received the invasion matrix grew in area 

over the course of the study (Fig 2.8 A & B) (118). When the MDA-MB-231 cells 

in our lab were analyzed followed using the kit protocol, MCAs resembled those 

in the kit example that had not received invasion matrix (Fig 2.8 C). The MCAs 

did not change significantly in area over the course of the study (Fig 2.8 D).  
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Figure 2.8 MDA-MB-231 Cells Did Not Exhibit Expected Invasive Properties 

The invasion assay showed images of MDA-MB-231 cells under invasive and 

non-invasive conditions. With matrix, cells invaded and without matrix they did 

not invade (A) (118). The protocol’s example graph of MCA diameter shows 

increased area over the course of the study (B) (118). The MDA-MB-231 cells in 

our lab were not invasive. The cells resembled the cells in the protocol that were 

not given matrix (C). The MCAs remained small and did not significantly increase 

in area over the course of the study (D). 
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2.3.5 Migration Assays – MCF-7 and MDA-MB-231 

 MCF-7 and MCF-10A cells were treated with ketorolac at increasing 

concentrations. There was a dose dependent decrease in the number of cells 

that were able to migrate through the Boyden chamber pores. The experiment 

was repeated a minimum of three times and results were found to be statistically 

significant using a 1-way ANOVA test. This work was conducted by S. Ray 

Kenney. 
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Figure 2.9 Ketorolac Inhibits MCF-7 and MCF-10A Migration in a Dose 
Dependent Manner  

Migration was inhibited by ketorolac treatment. Increasing concentrations of 

ketorolac resulted in fewer migratory cells in both MCF-7 (A) and MCF-10A (B) 

cell lines. Migrations assays were done by Dr. S. Ray Kenney. 
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2.3.6 MMP Expression 

 Matrix metalloproteinase 9 (MMP9) expression was measured in the 

media of MCF-7 and MDA-MB-231 cells treated with ketorolac and 

supplemented with epidermal growth factor (EGF).  While MMP9 activity was 

present in all the samples, there was no significant difference between treatment 

groups in either the MCF-7 cells or the MDA-MB-231 cells. Changes in MMP9 

activity in MCF-7 cells were not expected because it is a non-invasive cell line, 

but there was no change in the MDA-MB-231 invasive cell line either. These 

results suggest that ketorolac treatment is not affecting the baseline MMP9 

activity. Additionally, the MDA-MB-231 cells are not expressing the invasive 

qualities expected from this cell line. The experiment was repeated three times 

and results were analyzed using a student’s t-test. 
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Figure 2.10 MMP Expression Does Not Change with Ketorolac Treatment 

MCF-7 (A) and MDA-MB-231 (B) cells were treated with racemic ketorolac and 

EGF. Representative gel from MCF-7 cell samples show clear MMP9 bands (C). 

Protein and conditioned media was collected to examine the amount of MMP9 

enzyme present using zymograms. There was no significant change in the 

relative amount of MMP9 detected when treated samples were compared to non-

treated samples. MDA-MB-231 and MCF-7 cells had slightly more MMP9 present 

when treated with EGF in addition to the ketorolac and the amount of MMP9 

increased with increasing ketorolac concentration, but the change was not 

significant. Band density was normalized to the non-treated control. Statistics 

were conducted using a one way t-test. 
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2.4 Discussion 

These in vitro studies were conducted with two goals in mind. The first 

was to confirm that the ketorolac concentrations used in the studies were non-

toxic and the second was to test whether ketorolac decreases breast cancer cell 

proliferation. There is evidence that (R)-ketorolac inhibits Rho GTPase activity 

(51). Members of the Rho-GTPase family are important regulators of cellular 

functions involved in actin reorganization, cell migration, invasion, proliferation 

and growth (74). In epidemiological studies of breast cancer patients who were 

given ketorolac as part of their perioperative care, researchers identified a 

correlation between ketorolac administration and patient survival (43,115). Other 

studies have exhibited a positive correlation in the ability of (R)-ketorolac to 

inhibit ovarian cancer cell migration and invasion both in vitro and in clinical 

studies (45,50). These studies have led us to hypothesize that (R)-ketorolac acts 

in preventing breast cancer metastasis in much the same way as has been 

identified in ovarian cancer, by inhibiting the activity of Rho-GTPases, Rac1 and 

Cdc42. 

With the viability studies it was found that racemic ketorolac and its 

enantiomers do not affect the viability of MCF-7 or MDA-MB-231 cells in either 

monolayers or MCAs up to 300 µM concentrations. MCAs are more organotypic 

but, due to concerns that the drug and the viability assay reagent, PrestoBlue, 

did not penetrate the MCAs fully, monolayer viability assays were also 

conducted. Additionally, in some exploratory viability assays, after treating with 

ketorolac, MCAs were centrifuged in flat bottom plates to break apart and spread 
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out cells for full PrestoBlue penetration. This method did not make a difference in 

the cell viability results. Cell viability was the same in non-treated cells as in cells 

treated with ketorolac, suggesting that the drug is non-toxic. When cell viability is 

affected by a drug, there is less cell growth and fewer cells on the plate. At 

greater drug concentrations, cells that are present begin to form apoptotic blebs 

and have fewer protrusions. Finally, cells begin to pull off of the pate, forming 

spheroids and floating around the dish, and pieces of un-intact cellular 

membrane are present in the media. In our cell viability assays there were no 

visual changes in monolayer or MCA morphology, when cells were treated with 

ketorolac. Considering these findings, ketorolac does not decrease breast cancer 

metastasis by causing apoptosis, or cell death, in cancer cells.  

Colony forming assays were able to show that while ketorolac is non-toxic, 

it is able to inhibit cell growth and colony formation, without killing the cells. 

Breast cancer cells treated with ketorolac were able to grow and form colonies, 

but at a much slower rate than the placebo treated controls, leading us to 

hypothesize that the drug is impeding the cell’s ability to grow and divide.  

MCF-7 and MDA-MB-231 cells were treated with ketorolac and analyzed 

using flow cytometry to determine if ketorolac causes cell cycle arrest. One 

mechanism of some anti-cancer drugs, like paclitaxel, is interference with normal 

microtubule activity (reviewed (38)). When cells cannot properly regulate 

microtubule polymerization and depolymerization, the cell can get “stuck” in one 

phase of cell cycle, unable to complete mitosis. The roles Rac1 and Cdc42 have 

in cytoskeletal reorganization support the theory that arrest of these two Rho-
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GTPases may cause cell cycle arrest. When MCF-7 and MDA-MB-231 cells were 

treated with ketorolac, there was no cell cycle arrest observed. These results 

indicate that ketorolac does not affect the cytoskeletal polymerization or 

depolymerization abilities of breast cancer cells.  

Based on correlations between ketorolac administration and decreased 

breast cancer metastasis, we hypothesized that treating breast cancer cells in 

vitro with ketorolac would decrease their migration and invasion abilities (43,46).  

Zymograms using both MCF-7 and MDA-MB-231 cells were used to examine the 

effects ketorolac has on MMP9 expression. MMPs are enzymes used by the cell 

to break down basement membranes, penetrate through blood vessels and 

metastasize to distant locations (62). If ketorolac was affecting cell invasion and 

migration via MMP production, we should expect to see a decrease in MMP 

protein with increasing concentrations of ketorolac. MDA-MB-231 cells are known 

to be an invasive cell type, while MCF-7 cells are non-invasive, thus a more 

drastic change in MMP9 production in MDA-MB-231 cells than in MCF-7 cells 

was expected when treating with ketorolac. While zones of inhibition were 

observable and measurable in the zymogram gels, there was no significant 

difference in the band density between treatment groups suggesting that the 

ketorolac treatment is not affecting the invasiveness of the cells. Also, the MDA-

MB-231 cells in our lab do not have invasive qualities expected of them.  

Work done in our lab by S. Ray Kenney showed that when MCF-7 and 

MCF-10A cells were treated with ketorolac, they lost their ability to migrate in a 
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concentration dependent manner. These same migration assays were conducted 

in MDA-MB-231 cells and no change in migratory ability was observed.  

Invasion assays using untreated MDA-MB-231 cells were conducted to 

determine if our invasive breast cancer cell line was able to be invasive, however 

invasion into the matrix gel was not apparent. Combining these results with the 

lack of migration and considering there was no change in MMP9 expression 

when cells were treated with ketorolac, it was concluded that the MDA-MB-231 

cells in our laboratory are not the phenotypically normal MDA-MB-231 cells we 

expected to have. The MDA-MB-231 breast cancer cells in our laboratory do not 

exhibit the migratory and invasive characteristics expected of this cell line. These 

changes may have been caused by multiple factors such as undergoing too 

many passages or poor culturing techniques. New MDA-MB-231 cells should be 

obtained and the in vitro assays described here should be repeated.   

In future work it would be useful to conduct Western blots to examine the 

effects of (R)-ketorolac on downstream effectors of Rac1 and Cdc42 in breast 

cancer cells. This information may reveal the Rho-GTPase activation pathway 

that is affected by (R)-ketorolac and provide more insight to the exact mechanism 

of action of the drug.  
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3. THE EFFECTS OF KETOROLAC ON MAMMARY GLAND CANCER 

CELL PROLIFERATION AND A STUDY OF ITS POTENTIAL TOXICITY 

IN PYMT MICE 

3.1 Introduction 

 Breast cancer is the second most commonly diagnosed cancer in women 

after skin cancer (1). Its heterogeneity and multiple forms of induction, including 

genetic inheritance, and random mutation, make it a convoluted disease. 

Overexpression of cell surface receptors like HER2/neu can give rise to 

tumorigenesis by causing uncontrolled activation of proteins involved in cell 

growth and migration, angiogenesis and anti-apoptotic pathways. Testing anti-

cancer drugs in cell culture can tell us how various proteins and signaling 

pathways may be altered, but it cannot serve as a predictive measure for the 

complexities of a living system. Reliable animal models allow for the manipulation 

of signaling pathways involved in tumorigenesis and application of drug 

treatments before human testing. 

 MMTV-PyMT mice were chosen as the model system because of their 

similarities to human breast cancer as well as tumor formation characterized by a 

short latency and high lung metastasis incidence occurring independently of 

pregnancy (107). MMTV-PyMT mice develop primary mammary gland tumors 

around 4-8 weeks of age, externally visible tumors around 10 weeks of age, and 
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exhibit widespread lung metastasis around 12-14 weeks of age (108). 

 

Figure 3.1 MMTV-PyMT Mouse Mammary Tumor Development Timeline 

MMTV-PyMT mice develop palpable tumors around 8 weeks of age. Around 10 

weeks the tumors become large enough to observe externally and between 12 

and 14 weeks of age, the mammary tumors begin metastasizing to the lungs. 

 

As in humans, tumor formation in MMTV-PyMT mice can be categorized 

into multiple stages according to severity: hyperplasia, adenoma/mammary intra-

epithelial neoplasia, and early and late carcinoma (106). These similarities to 

human breast cancer allow us to examine the effects of anti-cancer drugs at 

various stages in cancer progression.  

In this study we were interested in the potential toxic effects and early 

therapeutic effects of ketorolac and its enantiomers on an organism. This study 

was also used to examine initial differences between enantiomer and racemic 

treatment groups and to provide information for future longer experiments. The 

mice in this study were examined for any signs of toxic side effects of the drugs 

and mammary gland samples were collected at the point when hyperplasia was 

just beginning to become apparent. We hypothesized that racemic ketorolac and 
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its enantiomers, at this stage, would not present any toxic effects to the organism 

and that we would observe few effects on early stage mammary gland tumors.  

 

Figure 3.2 In vivo Experimental Outline 

MMTV-PyMT mice were trained at 5 weeks old to consume a pill containing 

either ketorolac treatment or placebo treatment. In the short study mice 

consumed pills containing placebo, racemic ketorolac, (R)-ketorolac, or (S)-

ketorolac every 12 hours for 21 days. In the longer studies mice consumed pills 

containing placebo or (R)-ketorolac every 12 hours, 5 days a week for either 47 

(12 week old mice) or 64 (14 week old mice) days. At the end of the experiment, 

mice were sacrificed, their organs harvested and examined for signs of drug 

toxicity and tumor burden. (mouse image adapted from 

http://www.dianliwenmi.com/postimg_4436338_10.html) 

3.2 Materials and Methods 

3.2.1 Pill Preparation  

Estimating an average mouse weight of 22 g, mice were dosed with 1 

mg/kg ketorolac twice a day. Pills were made to contain 22 µg/pill ketorolac. To 

make 100 racemic ketorolac pills with, 2.2 mg ketorolac tris salt (Sigma #K1136) 

was dissolved in 200 µL dH2O and 2 µL of 2% bromophenol blue was added to 

serve as a mixing aid. Then the solution was dropped onto 12 grams of bacon 

flavored transgenic dough (BioServ #S3472) and mixed with a spatula until no 
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blue streaks remained. The dough was pressed into a 100 mg pill molds and left 

to dry for two days (119). Stock solutions of (R)-Ketorolac (Lot # 2-KMT-132-2), 

and (S)-Ketorolac (Lot # 2-KMT-129-2) (Toronto Research Chemicals Inc.) were 

made by adding 1 mL of 100% methanol directly to the 5 mg of powdered drug in 

each vial. To make 100 pills, 440 µL of the stock solution was combined with 

bromophenol blue, added to dough, mixed and put into pill molds, as described 

before.  

3.2.2 Mice  

FVB/N-Tg(MMTV-PyVT)634Mul/J mice, hereafter referred to as MMTV-

PyMT mice were originally obtained from The Jackson Laboratory. The female 

mice used are heterozygotes bred by crossing a MMTV-PyMT male to a wild 

type FVB female resulting in approximately half the offspring being transgenic 

(MMTV-PyMT positive). Animals were housed at the animal research facility at 

the University of New Mexico Health Sciences Center. They were maintained 

under a controlled temperature of 22–23°C with a 12hr light, 12hr dark cycle and 

fed normal chow ad libitum. All procedures were approved by the University of 

New Mexico Institutional Animal Care and Use Committee and carried out in 

accordance with the NIH Guide for the Care and Use of Laboratory Animals. 

Animal studies were conducted under an approved protocol 14-101235-HSC. 

3.2.3 Experimental Design and Dosing Schedule  

Three cohorts of mice were used for this study. At five or six weeks of age, 

MMTV-PyMT female transgenic mice were housed into treatment groups of 2-3 

mice per cage and trained to eat pills by being offered placebo pills twice a day 
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for three days. An oral route of dosing was chosen to most accurately reflect the 

kind of drug administration a patient might experience. Standard clinical ketorolac 

dosing includes one initial IV or IM dose and then, if continued, oral dosing (42). 

The pill method of dosing was chosen over oral gavage to decrease the amount 

of stress to which the animals were subjected (119). 

After the training period, mice were dosed with 1 mg/kg of correlating drug 

or placebo every 12 hours for the duration of the study (119). At varying intervals, 

mice were sedated with isofluorane, weighed and palpated for tumor growth. No 

tumor became externally visible.  

This study included 38 mice. At least one mouse was dropped from the 

final data sets due to refusal to consume the pill. Mice were housed into one of 

four treatment groups: placebo, racemic ketorolac, (R)-ketorolac, or (S)-ketorolac 

and dosed every 12 hours for 20 days. On day 20 of dosing (8 weeks old), mice 

were sacrificed and organs and tissue were harvested and preserved.  

3.2.4 Dissection  

Mice were euthanized, two at a time, by injecting 200 µL of Sleepaway 

into the peritoneal cavity. After death was confirmed, they were weighed and 

then doused with 70% EtOH. Cardiac punctures were performed using heparin 

coated needles and stored in heparin tubes. Blood was stored in epitubes on ice 

until it could be separated by centrifuging at 2500 rpm for 10 minutes. Serum was 

stored at -80⁰C. Clamping forceps were used to clamp off the right lung which 

was then cut out and snap frozen in liquid nitrogen. A probe was used to lift the 

trachea and cut a small slit into which a small blunted needle was inserted and 



www.manaraa.com

59 
 

4% paraformaldehyde (PFA) was injected to gently inflate the left lung. The 

trachea was clamped off with locking forceps and the lung was separated from 

the body and kept in 4% PFA at 4⁰C. The stomach was removed, slit open and 

cleaned out with PBS, and kept in 4% PFA. One kidney from each mouse was 

removed, weighed, bisected sagittally and fixed in 4% PFA. Sizeable mammary 

tumors were removed and snap frozen in liquid nitrogen. Skin bands around the 

4th mammary glands were removed and pinned to a tray which was then flooded 

with 4% PFA. The next day the mammary glands were removed from the skin 

and placed in embedding cassettes in PBS for processing. Axillary and inguinal 

lymph nodes and a piece of liver were removed and put into epitubes with 4% 

PFA. Unless otherwise noted, all tissue preserved in 4% PFA was later moved 

into 50% EtOH or paraffin embedded for permanent storage.  

3.2.5 Mammary Tissue Whole Mounts  

Mammary glands were isolated from mice in the 21 day study. Mammary 

glands stored in 4% PFA underwent two changes of acetone over 8-24 hours 

and then were changed to water for 1 hour. Carmine alum stain (made by 

combining 1 g carmine, 2.5 g aluminum potassium sulfate and 450 mL dH2O, 

boiling for 20 minutes and adjusting the volume to 500 mL with dH2O and 

filtering) was used to stain the mammary glands overnight. The mammary glands 

were sequentially changed into water, 70%, 85%, 95%, 100% and 100% EtOH 

for one hour each, then left in HemoDE (Electron Microscopy Sciences, Hatfield, 

PA) overnight. Mammary glands were kept in individual vials in methyl salicylate 

(Wintergreen) (Sigma-Aldrich, St.Louis, MO). Whole mounts were imaged with 
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MoticCam 2300 running Motic software on an Olympus SZH dissection 

microscope. Pixel intensity of tumor and non-tumor areas was analyzed using 

ImageJ software. 

3.2.7 Lung Preservation  

Left lungs, previously inflated with 4% PFA, were rinsed twice in PBS and 

embedded in paraffin. Cassettes containing tissue were immersed in 50%, 70%, 

70%, 80%, 95%, 100%, and 100% EtOH, HemoDE twice, and paraffin twice for 

one hour each. Tissue was embedded in paraffin blocks and, 3-10 µm sections, 

100 µm apart were placed on slides, and stained with hematoxylin and eosin 

(H&E).  

3.2.8 Tissue Preservation  

Tumor, kidney, liver, and lymph node tissue preserved in 4% PFA 

overnight was moved into 50% EtOH for permanent storage or was rinsed three 

times in PBS for at least 30 minutes each time and embedded in paraffin. 

Cassettes containing tissue were immersed in 50%, 70%, 70%, 80%, 95%, 

100%, and 100% EtOH, HemoDE twice, and paraffin twice for one hour each. 

Tissue was embedded in paraffin blocks and kept at room temperature. 

3.2.9 (S)-Ketorolac Mouse Study  

Three mice were used in this study to examine the conversion of (S)-

ketorolac to (R)-ketorolac. At the beginning of 6 weeks of age, these mice were 

trained for three days to eat a placebo pill as described before (119). They were 

then fed a pill containing 1 mg/kg of (S)-ketorolac every 12 hours, 5 days a week, 

for 7 days. Mice were sacrificed using CO2 gas, and cardiac punctures were 
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performed. Blood samples were placed into plain epitubes. Samples were 

centrifuged at 2500 rpm for 10 minutes, separated into serum and red blood cells 

and stored at -80⁰C, until HPLC could be performed. 

3.3 Results - 21 day studies  

3.3.1 Weekly and Final Weights 

To investigate the effects of ketorolac on tumor growth and to analyze the 

potential toxic effects of the drug mice were treated with 1 mg/kg of ketorolac or 

its enantiomers for 21 days. Over the course of the study, mice were weighed as 

an indicator of positive health and growth. One mouse in the racemic ketorolac 

treatment group was found to have malocclusions and was ultimately dropped 

from the study. When the data was normalized the placebo treated mice gained 

significantly more weight than the R-ketorolac and S-ketorolac treated mice, but 

not the racemic ketorolac treated mice. These differences may be attributed to 

differences between litters, as the mice were not randomly chosen from different 

litters for each treatment group. In later experiments, mice from each litter were 

more evenly distributed amongst treatment groups. One cohort of mice were 

dropped from the weight gain data but included in the final mass data because 

their mass was recorded on different days than the other cohorts. Statistical 

analysis was conducted using a two-way ANOVA with a Bonferroni post-test. 

There were no significant differences in the final mouse mass between treatment 

groups. Final mouse weights were recorded at the time of sacrifice at 8 weeks of 

age. All of the mice had a final mass of around 20 grams. No significant 

differences were observed between treatment groups.  
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Figure 3.3 Short Term Study Mouse Mass 

Mouse weights were recorded routinely over the course of the study and final 

mouse weights were recorded at the end of the study. The study was concluded 

after 21 days of treatment when the mice were about eight weeks old. In the 

normalized mouse weight gain, the R-ketorolac and S-ketorolac treated groups 

gained significantly less weight than the placebo treated group. Statistical 

analysis was conducted using a two-way ANOVA with a Bonferroni post-test. 

There were no significant differences in final un-normalized body mass between 

treatment groups (B). 
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3.3.2 Kidney Weights 

Renal toxicity is a primary concern associated with long term ketorolac 

treatment(42). Because of this concern, one kidney from each mouse was 

removed and weighed. All of the mouse kidneys had a mass of 0.093-0.16 

grams. The average kidney weight was 0.122 g for the placebo group, 0.13 for 

the racemic group, 0.132 for the (S)-ketorolac group and 0.126 for the (R)-

ketorolac group. There was no significant difference in mouse kidney weights 

between treatment groups.  

The kidney weight over total weight ratio was calculated for each 

treatment group and no significant differences were seen between treatment 

groups. All of the mice had a kidney weight to total weight ratio of about 0.006.  
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Figure 3.4 Short Term Study Kidney Weights 

At the time of dissection, kidney weight was recorded as an assessment of 

kidney toxicity of ketorolac. There was no significant change between treatment 

groups when compared to placebo controls either in total kidney weight (A) or in 

the kidney weight versus total weight ratio. 



www.manaraa.com

65 
 

3.3.3 Short Term Study Weekly Palpable Tumor Load 

Tumor growth was monitored by routine palpations over the course of the 

study. The overall number of palpable tumors increased with age and over the 

course of treatment in mice. No immediately discernable differences were 

observed between treatment groups. It is important to note that the number of 

tumors that could be felt by palpation from week to week is subjective and not an 

exact indicator of tumor growth.  

  



www.manaraa.com

66 
 

 

Figure 3.5 Short Term Study Weekly Palpable Tumor Load  

Over the course of the study, mouse mammary glands were palpated for 

presence of tumor growth. The amount of tumors detected increased over time 

but the difference between groups was not significant. 

  



www.manaraa.com

67 
 

3.3.4 Whole mounts of mammary glands 

The mammary tumors did not grow large enough to separate from the 

mammary gland for weighing so instead, the fourth mammary glands were 

removed and imaged as whole mounts. Whole mounts of carmine stained 

mammary glands were imaged on a dissection microscope. The figure below is 

representative of a typical mammary gland. Most mammary glands in the 8-week 

old PyMT mouse had an area of denser tumor tissue in the proximal area of the 

gland which gradually decreased in amount and density moving distally through 

the gland. If not obscured by tumor tissue, the lymph node can be observed as a 

distinctly darker oval area slightly more proximal from the center of the gland. 

The mammary ducts spread out from the proximal end of the mammary gland, 

normally ending in slightly rounded terminal end buds. Mammary gland 

structures are surrounded by a combination of fatty tissue, and connective tissue 

which stains a slightly darker color than the fatty tissue but not as dark as tumor 

tissue.  

Whole mount mammary gland images are representative of a range of 

mouse mammary gland morphologies observed. In the mammary gland from the 

placebo treated mouse the darker areas of tissue are tumorigenic and are spread 

throughout the gland. In the mammary gland from a (R)-ketorolac treated mouse 

some tumors are visible, but they are fewer in number and size than in the 

placebo treated mammary gland.  
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Figure 3.6 Mammary Gland Whole Mount Example 

In the carmine stained whole mount mammary gland from an 8 week old MMTV-

PyMT mouse, tumor tissue can be observed as well as the lymph node, fatty 

tissue and terminal end buds of the ductal network. This is a typical 

representative image.  
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Figure 3.7 Treated vs. Untreated Mammary Gland Whole Mounts 

Mammary glands from (R)-ketorolac treated mice had less tumor growth and 

more areas with fatty tissue and clearly delineated terminal end buds than 

mammary glands from placebo treated mice.  
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3.3.5 Histograms of Whole Mounts 

 Using ImageJ, pixel intensity information was collected from each 

mammary gland whole mount and compiled into histograms. ImageJ assigned 

numbers 0 through 255 to indicate the intensity of pixel color ranging from white 

to black, then counted how many pixels fit into each category of pixel intensity. 

The left and right mammary glands from each mouse were analyzed and 

averaged into one set of pixel data for each mouse. Pixel counts for each 

treatment group were compiled into linear histograms  

In the whole mount image, the lighter pixels (pixels in the lower range) are 

non-tumorigenic tissue, while the darker pixels (pixels in the higher range) are 

tumorigenic tissue. Additionally, the drawing tool was used to exclude the lymph 

node and include only tissue up to the terminal end buds before analyzing the 

image. The resulting histograms showed peaks in pixel counts in the darker 

spectrum of pixels, representing a delineation between normal tissue and 

tumorigenic tissue.  

Pixels that were dark enough to be considered tumor areas generally fell 

into the 175-225 range. Comparison of histograms for each treatment group 

show significant differences between the treatment groups and the placebo 

groups of mice. Mice in the placebo group had significantly higher amounts of 

tumorigenic lesions in their mammary glands than either the racemic ketorolac, 

(S)-ketorolac, or (R)-ketorolac treatment groups. Each group had an n of 9 and a 

p value less than 0.0001. Significance was determined using the student’s 

unpaired t-test.  
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Figure 3.8 Mammary Gland Whole Mount Histograms 

Darker pixels indicated more tumorigenic tissue while lighter pixels indicated 

areas with more fatty tissue. Placebo treated mice had significantly greater 

density of tumor tissue in their mammary glands than the racemic or 

enantiomeric ketorolac treated groups. There was no significant difference in 

tumor density between the ketorolac treated groups. Significance was 

determined using the student’s unpaired t-test. 

  



www.manaraa.com

72 
 

3.3.6 Lung H&E Staining 

In this study it was hypothesized that ketorolac treatment would decrease 

the occurrence of mammary gland tumors metastasizing to the lung. Lung tissue 

was collected and analyzed for the presence of metastasis. H&E stained lung 

tissue in mice at eight weeks of age showed no tumor metastasis. There were no 

differences in lung tissue appearance between placebo and ketorolac treated 

mice. The lung tissue observed appeared to be visually normal healthy mouse 

lung tissue. 

  



www.manaraa.com

73 
 

 

Figure 3.9 H&E Stained Lung Tissue 

Mouse lungs were inflated with 4% PFA and paraffin embedded. Lung tissue was 

sliced in 3-10 µm sections and H&E stained. At eight weeks of age, no difference 

in lung tissue could be discerned between placebo and ketorolac treated mice, 

and no metastasis was detected. The image shown is a representative sample. 
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3.4 Discussion 

This 21 day study was conducted to provide information about the early 

effects of ketorolac treatment, to determine toxicity, and to examine differences, 

or lack thereof, between treatment groups helping to set standard protocols for a 

longer study.  

Mouse mass was routinely recorded as an indicator of drug toxicity and 

overall mouse health. When the data was normalized, by normalizing each 

mouse’s weight to its starting weight, the placebo treated mice weighed 

significantly more than the R-ketorolac and S-ketorolac treated mice, but not the 

racemic treated mice. This difference may have been caused by the individual 

attributes of each litter of mice that were used, as the mice from each litter were 

not evenly distributed amongst all the treatment groups. In future experiments, 

mice from the same litter were even distributed between treatment groups. Final 

un-normalized mouse weights were not significantly different, indicating that 

ketorolac has little toxic effects on the mouse’s ability to gain weight normally. 

A second indicator of drug toxicity, kidney mass and kidney mass to total 

body mass ratios, showed no significant differences between treatments or when 

compared to placebo treated mice. These results suggest that ketorolac is not 

highly toxic when used for 21 days. 

Whole mount images of the short term study mammary glands were 

imaged and assessed for tumor density. The mice were 8 weeks old at the time 

of sacrifice. This is the age at which the mammary glands begin growing tumors. 

Due to this timing, we were able to see a delay or decrease in tumor growth as a 
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result of ketorolac treatment that is not as easily observed as the disease 

progresses. The extent and distribution of tumor growth and burden in the 

placebo treated mice was typical for their age. Visually, there was less tumor 

burden in ketorolac treated mice than in placebo treated mice. Histograms 

describing tumor growth in the mammary gland whole mount images indeed 

showed a significant decrease in tumor burden in the ketorolac treated mice, 

when compared to placebo treated mice. The significant decrease in tumors was 

present in racemic, (S)-, and (R)-ketorolac treated groups. Keeping in mind the 

ability of mice to interconvert (S)-ketorolac to (R)-ketorolac, these results are 

logically sound.  

Lung tissue was assessed for metastatic lesions, but as the mice were still 

very young and metastasis is not generally observed in MMTV-PyMT mice until 

at least 12 weeks of age, no metastasis was present (33,106). The short term 

study mouse lungs were visually normal and healthy.  

In this shorter treatment duration, therapeutic concentrations of ketorolac 

did not cause toxic effects in MMTV-PyMT breast cancer mouse models. The 

mice remained healthy looking and did not suffer any measurable toxic effects 

from the treatment. Ketorolac treatment significantly decreased the amount of 

mammary gland hyperplasia. The results observed with racemic ketorolac and its 

enantiomers did not vary significantly. As a result, in further experiments, (R)-

ketorolac treatment only, was conducted. 
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4. THE EFFECTS OF KETOROLAC ON PROLIFERATION AND 

METASTASIS OF MAMMARY GLAND TUMOR CELLS IN PYMT MICE 

4.1 Introduction 

 Metastasis is the main cause of death in breast cancer patients (120). 

Human breast cancer most often metastasizes to the lung, liver, bones and brain 

(121). Two mouse breeds commonly used to model human breast cancer and 

metastasis are MMTV-HER2/neu/ErbB2 (hereafter MMTV-HER2) and MMTV-

PyMT mice. MMTV-HER2 mice overexpress HER2, leading to the development 

of multifocal adenocarcinomas and lung metastasis lesions 15 weeks after 

pregnancy (122). In humans, HER2 gene overexpression is found in 15-30% of 

all breast cancers and contributes to mammary tumor formation (10). HER2 is an 

EGF family-type receptor tyrosine kinase, which regulates cell growth, 

differentiation and cell survival by activating proteins involved in signaling 

pathways such as MAPK, and PI3K/Akt pathways (reviewed (11)). HER2 

overexpression specifically induces tumor formation and progression through the 

GEF protein, Tiam1 (105).  

The MMTV-HER2 mouse tumor formation has a longer latency than in 

MMTV-PyMT mice, and only occurs after pregnancy (107). Like MMTV-HER2 

mice, MMTV-PyMT mice overexpress HER2 resulting in the constitutive 

activation of cell growth, differentiation and cell survival signaling pathways. Also, 

tumor formation in MMTV-PyMT mice occurs independently of pregnancy with a 

shorter latency (107). The propensity for lung metastasis in MMTV-PyMT mice, 
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and their similarities to human breast cancer, makes them a good model for 

studying potential anti-metastatic compounds such as (R)-ketorolac.   

This study focused on (R)-ketorolac treatments compared to placebo 

treatments, and the ability of (R)-ketorolac to prevent lung metastasis. Tumor 

growth in relation to treatment was documented and lung tissue samples were 

collected to measure metastasis. We hypothesized that (R)-ketorolac would 

inhibit the metastatic ability of mammary gland tumor cells resulting in fewer 

metastatic lesions in the lungs of (R)-ketorolac mice when compared to placebo 

treated mice.  

4.2 Materials and Methods 

4.2.1 Experimental Design and Dosing Schedule  

Pills were prepared as described previously. Five cohorts of mice were 

used total. Three cohorts were sacrificed at 12 weeks of age and two cohorts 

were sacrificed at 14 weeks of age. The 12 and 14 week experimental data is 

combined in the results where appropriate. The experiment proceeded much as 

described previously with the following changes: Mice were dosed twice a day, 

12 hours apart, 5 days a week. On the day of dissection, mice did not receive 

their morning dose. Once a week mice were sedated with isofluorane, weighed 

and palpated for tumor growth. Externally visible tumors were measured using 

calipers and an approximate volume was calculated using the formula: volume = 

length*width*(π/4).  

This study included 24 mice in the 12 week group, and 13 mice in the 14 

week group. Two mice were dropped from the 12 week study, and 3 mice were 
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dropped from the 14 week study. Mice were housed into one of two treatment 

groups: placebo, or (R)-ketorolac, and dosed until the age of 12 weeks and 5 

days or 14 weeks and 1 day. The limiting age of mice for the time of sacrifice in 

the first, 12 week study, was determined when one individual within the first 

group of mice grew a tumor that exceeded the maximum 15 mm diameter limit 

set by University of New Mexico’s Institutional Animal Care and Use Committee 

(IACUC) guidelines. This end date decision put the mice between 48 and 51 

days of treatment at the time of sacrifice. On day 48-51 of dosing (12 weeks, 5 

days old), mice were sacrificed and organs and tissue were harvested and 

preserved. Further cohorts of mice were treated until 14 weeks of age as there 

were not enough metastatic lesions in the lungs of the 12 week old mice to make 

any conclusions about lung metastasis. Data from the 14 week old mouse cohort 

was combined with the weight change and palpable tumor load data of the 12 

week old mice to increase the n but tumor weight and lung metastasis data was 

reported separately due to the age, and thus tumor progression difference, at 

time of sacrifice. 

4.2.2 Dissection  

Mice were euthanized by injecting ~100 µL Phenobarbital (Fatal Plus 

59mg/mL, 0.1 mL/25 g mouse) into the peritoneal cavity. Mice were weighed and 

then doused with 70% EtOH, as previously described. Cardiac punctures were 

performed with plain non-coated needles and blood was put into plain 1.5 mL 

epitubes and stored on ice until it could be separated by centrifuging at 2500 rpm 

for 10 minutes. Serum was stored at -80⁰C. Tumors from all 10 mammary glands 
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were removed, photographed, weighed and cut in half. Half the tumor was snap 

frozen in liquid nitrogen and half was preserved in 4% PFA until it could be 

paraffin embedded. Lung, stomach, kidney and liver collection and storage were 

performed as previously described.  

4.2.3 H&E Mammary Tumor Staining 

 Mammary gland tumors were fixed in 4% PFA, then paraffin embedded. 

Sample sectioning, H&E staining, and analysis was conducted by Donna 

Kusewitt, DVM, PhD, ACVP. 

4.2.4 RNA Isolation and qRT-PCR  

Lung and mammary tumor tissue samples from the 81 day studies were 

weighed into 30 mg samples and put into 1.5 mL epitubes. Liquid nitrogen was 

added to the epitubes to freeze tissue. 300 µL of RLT buffer, from an RNeasy 

Mini Kit (Qiagen, Valencia, CA) was added to the sample and an electric hand 

drill fitted with nuclease-free 1.5 mL pestles (Kimble-Chase, Vineland, New 

Jersey) was used to break down the tissue. The lysate was homogenized using 

the QIAshredder (Qiagen, Valencia, CA) and RNA was isolated using the 

RNeasy Mini Kit according to the manufacturer’s protocol. RNA was converted 

into cDNA using a High Capacity cDNA Reverse Transcription Kit (Applied 

Biosystems, Inc. Foster City, CA) and a TC-3000X Thermocycler (Techne Inc., 

Burlington, NJ). cDNA was generated from 1000 ng of RNA of each sample. The 

resulting cDNA samples were diluted 1:3 with nuclease-free water.  

Quantitative Real-Time polymerase chain reaction (qRT-PCR) was 

conducted using six mouse primers: Rac1, Rac1b, RhoA, Cdc42, PyMT and β-
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actin (Qiagen, Valencia, CA; excluding PyMT, catalog numbers QT01070146, 

QT00127673, QT00197568, QT00091560, QT00095242 respectively). PyMT 

primers used were, PyMT forward: 5’-CGG CGG AGC GAG GAA CTG AGG 

AGA G-3’ and reverse: 5’ TCA GAA GAC TCG GCA GTC TTA-3’ (33). Fast 

SYBR® Green Master Mix (Applied Biosystems, Inc. Foster City, CA) was used 

to make a 1:5 master mix for each primer. Samples were loaded in triplicate in 

384-well plates using 6 µL of master mix and 4 µL of sample per well. A 

nuclease-free water sample was used as a negative control, and β-actin was 

included as a positive control. Genes were amplified on a 7900 HT Fast Real-

Time PCR System (Applied Biosystems, Inc. Foster City, CA). Relative 

expression was calculated with the ΔΔct method, using β-actin as the normalizer 

and analyzing the treated samples in reference to placebo samples. 

4.3 Results - 81 Day Studies  

4.3.1 Weekly and Final Weights 

Mice were weighed on a weekly basis. In the 12 week study, at ages 9, 

10, 11 and 12 weeks, the placebo treated mice had a significantly greater overall 

body mass than the (R)-ketorolac treated mice, but this significance disappeared 

when the data was normalized. Each mouse’s weight was normalized to it’s 

starting weight to reflect relative change in mass. In the 14 week studies, there 

were no significant differences in body mass between treatment groups. Mouse 

body mass at four weeks old ranged from 15-20 grams across both treatment 

groups. Final mouse body mass for the mice sacrificed at 12 weeks of age was 

between 24.2-29.5 grams in the placebo group and 22-26.3 grams in the (R)-
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ketorolac group. The placebo group and (R)-ketorolac group had an n=11. Final 

mouse body mass for the mice sacrificed at 14 weeks of age was between 27.2-

32.7 grams in the placebo group and 24.2-34.0 grams in the (R)-ketorolac group. 

The placebo group for the 14 week treated mice had an n=6 while the R-

ketorolac group had an n=7. Three mice were dropped from the study in the 14 

week old mouse group. Two mice had malocclusions and were much smaller 

than other mice in the study, and one mouse was much larger than all other mice 

in the study. Significance was determined using an unpaired student’s t-test. 

Final mouse body weights were significantly different at 12 weeks but not 

at 14 weeks. At 12 weeks, placebo treated mice had a greater average body 

mass than (R)-ketorolac treated mice. Placebo treated mice had an average 

mass of 26.5 grams while (R)-ketorolac mice had a final average mass of 25 

grams. Significance was determined using an unpaired student’s t-test and 

yielded a p < 0.05. At 14 weeks there was no significant difference in mouse 

body mass, although there were only 5 mice in each treatment group. So, the 

small n is likely to be the reason for no significant difference. 
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Figure 4.1 Long Term Study Weekly Weight Gain and Final Weight 

Mouse mass was measured and recorded weekly. There was no significant 

difference in weight gain between the two treatment groups over the course of 

the study. When only the 12 week final mass was considered, there was a 

significant difference between the placebo and (R)-ketorolac treated groups (B). 

In the 14 week old mice, there was no significant difference in mass between 

treatment groups (D). Significance was determined using an unpaired student’s t-

test (B, D).   
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4.3.2 Kidney Weights 

There was no significant difference in the kidney weights between the 

placebo and (R)-ketorolac treatment groups in either age group. At 12 weeks the 

average kidney weight was 0.126 grams in the placebo group and 0.125 grams 

for the (R)-ketorolac group. At 14 weeks the average kidney weight was 0.135 

grams in the placebo group and 0.14 grams for the (R)-ketorolac group. 

Additionally, there was no significant difference between the two treatment 

groups when comparing the kidney weight to total weight ratios.  One mouse was 

excluded from the 12 week group when calculating kidney weight:total weight 

ratio because its end mass was an outlier due to very large tumors. The kidney 

mass in this particular mouse was comparable with the other mouse kidneys. 
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Figure 4.2 Long Term Study Kidney Weights 

Kidney weight and total weight ratios were calculated. There was no significant 

difference in kidney weight:total weight ratios between placebo and (R)-ketorolac 

treated groups (A). There was no significant difference in kidney weights 

between treatment groups in either the 12 week or the 14 week mice (B, C).  
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4.3.4 Weekly Tumor Growth 

The number of palpable tumors increased over the course of the 

experiment and with increasing mouse age. While the placebo group had slightly 

more palpable tumor growth than the (R)-ketorolac treatment group over much of 

the study, the difference was not significant. Additionally, palpation is a subjective 

measurement that varies from session to session and cannot be considered an 

exact indicator of tumor growth. 
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Figure 4.3 Long Term Study Weekly Palpable Tumor Load 

Throughout the course of the study, mouse mammary glands were palpated, and 

tumor growth was recorded weekly. Palpable tumors increased over the course 

of the study in placebo and (R)-ketorolac treated groups. Shown are the 

combined 12 and 14 week mouse experiments (A), 12 week only (B) and 14 

week only (C). There was no significant difference between treatment groups in 

the number of tumors felt.  
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4.3.5 Tumor Mass 

Mammary tumors grew large enough to completely encompass each 

mammary gland and were impossible to separate from the mammary glands. 

The mass of each mammary gland/tumor was recorded. To compile the tumor 

mass to total mass ratio, the total tumor mass was summed for each mouse and 

compared to total mouse weight. A difference in tumor weight, while slightly 

greater in the placebo treated mice, was not significant between treatment 

groups. The tumor weight to total weight ratio was slightly greater in the placebo 

treated mice, but not significant. At 12 weeks, the average tumor weight in the 

placebo group was 3.4 grams and in the (R)-ketorolac group was 2.7 grams. At 

14 weeks, the average tumor weight in the placebo group was 5.2 grams and in 

the (R)-ketorolac group was 5.5 grams. One mouse was excluded from the (R)-

ketorolac group because abnormally large tumors caused it to be an outlier. 
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Figure 4.4 Long Term Study Tumor Weights 

The tumor mass total:mouse mass ratio was calculated. There were no 

significant differences between the two treatment groups (A). The total tumor 

mass from each mouse was recorded and found to not be significantly different 

between placebo and (R)-ketorolac treated mice. 14 week old mice had greater 

total tumor mass than 12 week old mice (B, C).   
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4.3.6 H&E Mammary Tumor Staining 

 H&E mammary tumor staining was conducted by Donna Kusewitt, DVM, 

PhD, ACVP, on 12 week old mouse mammary gland tumors. There was no 

significant difference in the average number of lesions per mouse. There were 

fewer mice in the (R)-ketorolac treated group than the placebo control group 

affected by early adenoma (Ad) and early carcinoma (Ca) suggesting that (R)-

ketorolac may help to inhibit early cancer cell proliferation, but the results were 

not significantly different. 
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Figure 4.5 H&E Staining of Mouse Mammary Tumors Show No Change 

Mouse mammary tumors were stained and analyzed for the presence of cell 

proliferation. There were no statistically significant differences in the average 

number of lesions present between the (R)-ketorolac treated mice and the 

placebo control (A). There was a suggestion of a delayed early tumor 

progression in the (R)-ketorolac treated mice when the percent of mice affected 

was analyzed, but the differences were not significant (B). 
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4.3.7 Lung H&E Staining 

H&E stained lung tissue sections were scanned for presence of tumor 

metastasis. Normal lung tissue had a lacy appearance with pink stained blood 

vessels throughout. Red blood cells left behind also stained pink. Areas of 

metastasis were defined as 10 or more purple stained nuclei grouped together in 

a disorganized arrangement.  

ImageJ was used to outline the areas of metastasis and measure the total 

number of pixels within the outlined area per mouse. The total number of 

metastasis sites per mouse were also counted. There was no significant 

difference in the amount of lung metastasis between the (R)-ketorolac treatment 

group and the placebo group in the 12 week old mice. In the 12 week old placebo 

treated mice 8 out of 11 mice had less than 5 detectable metastatic sites, and in 

the (R)-ketorolac treated mice 8 out of 9 mice had less than 5 detectable 

metastatic sites. So, a longer study was conducted to increase the chances of 

the presence of lung metastasis. In the 14 week old mice there was a slight 

increase in the metastatic area and a slight increase in the total number of 

metastatic sites in the placebo treated mice, when compared to the R-ketorolac 

treated mice, but the increase was not significant. It is important to note, as of 

this writing, the 14 week studies are not yet complete and thus, the population 

size is still small. A greater population size may result in significant findings.  
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Figure 4.6 12 week old H&E Stained Lung Tissue 

Mouse lungs were inflated with 4% PFA and paraffin embedded. Lung tissue was 

sliced in 3-10 µm sections and H&E stained. Typical metastatic lung tissue is 

represented by image A. Metastasis in lung tissue was identified and quantified 

by using ImageJ to quantify the total number of metastasis foci (B) and the total 

number of pixels in each metastatic area (C). There was no significant difference 

in the amount of metastasis quantified in placebo and (R)-ketorolac treated mice, 

at 12 weeks of age. 
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Figure 4.7 14 Week Old H&E Stained Lung Tissue 

Metastasis in lung tissue was identified and quantified by using ImageJ. The 

number of metastasis foci (A), and the total number of pixels in each metastatic 

area (B) per mouse, were measured. There was a slight increase in the area and 

number of metastatic sites in the placebo treated mice when compared to the R-

ketorolac treated mice, but the differences were not significant. 
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4.3.8 qRT-PCR – 12 Weeks 

 qRT-PCR was used to assess gene expression of Rho-GTPases, Rac1, 

Rac1b, RhoA and Cdc42, and the mouse mammary tumor gene of interest, 

PyMT. All results were corrected using β-actin controls then normalized to their 

respective placebo control. A relative expression value of one, indicated no 

change from the placebo control. In the tumor tissue, there was no change in 

gene expression when comparing the treatment groups with the placebo control. 

In the lung tissue of (R)-ketorolac treated mice, there were slight upregulations of 

Rac1b and Cdc42 gene expression when compared to their respective placebo 

controls but the differences were not statistically significant. There was a small 

upregulation of PyMT gene expression in placebo controls when compared to the 

(R)-ketorolac treated control, which is the change we were expecting to see in 

the lung tissue of these animal models, but the change was not statistically 

significant.  
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Figure 4.8 qPCR in Tumor Tissue – 12 Weeks 

Gene expression levels in the tumors of (R)-ketorolac treated mice were not 

different from the placebo control treated mice. In both treatment groups the 

gene expression of Rac1 (A), Rac1b (B), RhoA (C), Cdc42 (D) and PyMT (E) 

were the same.   
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Figure 4.9 qPCR in Lung Tissue – 12 Weeks 

Gene expression of Rac1b (B) and Cdc42 (D) was upregulated in the (R)-

ketorolac treated mice but the difference was not significant. PyMT gene 

expression in the lungs of placebo treated mice and (R)-ketorolac treated mice 

was not significantly different (E). Gene expression of Rac1 (A), and RhoA (C) 

was not changed.   
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4.4 Discussion 

This 81 day study was conducted to examine long term effects of 

ketorolac treatment on tumor growth and metastasis as well as long-term toxicity 

studies. In humans, racemic ketorolac is not recommended for use longer than 5 

days duration due to adverse toxic effects (42). These longer studies were 

terminated earlier than the projected 81 days, due to a limiting factor of tumor 

growth exceeding 15 mm in length according to IACUC guidelines. The first set 

of long term experiments were terminated at 12 weeks because one mouse 

exceeded the tumor growth limits. However, that particular mouse was ultimately 

dropped from the study. A second, and now ongoing, set of experiments is being 

conducted to 14 weeks because no lung metastasis was observed in the 12 

week old mice and the majority of mice were within ethical animal treatment 

limits, as set by IACUC. According to other studies conducted, the MMTV-PyMT 

mice in this study are expected to have significant lung metastasis between 12 

and 14 weeks of age (33,106). It has been suggested that this particular line of 

MMTV-PyMT mice may have genetically drifted, resulting in tumor metastasis at 

a later age. These mice require a longer time for tumor and metastasis 

development. (see appendix for metastasis development) 

MMTV-PyMT mouse models in this study developed palpable tumors 

around 8 weeks of age and caliper measurable tumors around 10 weeks of age. 

In the 12 week studies, there was a small increase in the number of palpable 

tumors in the placebo treated group when compared to the (R)-ketorolac treated 

group, but the difference was not significant and may have been attributed to 
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biased observation as the palpations were not conducted blindly. Overall, the 

number of palpable tumors increased with age, however the number of tumors 

felt is very subjective and difficult to accurately quantify from week to week. 

Additionally, external measurement of tumor volume could only be estimated 

because not all tumors were perfectly spherical. Some tumors grew oblong and 

flattened while other tumors, particularly the 2nd and 3rd mammary gland tumors, 

and later the 4th and 5th mammary gland tumors, began to grow into a single 

mass as they became larger. 

In this study a significant difference final in mouse mass was observed in 

the 12 week study, but not in the 14 week study. When the rate of weight gain 

was normalized, there was no significant difference in weight between the two 

treatment groups. The differences at 12 weeks could be attributed to more than 

one reason. When overall tumor mass was measured in the longer term study, 

the placebo mice had a greater overall tumor mass and a greater tumor:body 

mass ratio, however the differences were not significant. The placebo treated 

mice may have had a greater mass due to their increased tumor burden. On the 

other hand, the (R)-ketorolac treated mice may have exhibited decreased growth 

due to toxic effects of the drug. Considering the lack of other toxicity indicators, 

i.e. kidney mass differences, the former explanation is more likely to be true. The 

differences in mouse mass between treatment groups at 14 weeks of age were 

not significant. This could be an indication that the (R)-ketorolac treated mouse 

tumors were delayed in growth and not contributing to overall mass until that time 
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point. It also may be due to the small number of mice in the 14 week study. A 

larger population may change these final results.  

In the long term studies, the mammary tumor growth was so extensive, 

separation of mammary gland and tumor was deemed impossible and instead 

whole tumor/mammary gland sections were removed for analysis. Tumor weight 

totals per mouse were recorded and compared as whole numbers and as a ratio 

of tumor weight to total mouse weight. There was no significant difference in 

tumor weight totals in either the 12 week or the 14 week old mice. Although, the 

14 week old mice had a greater overall tumor weight than the 12 week old mice, 

which was expected. There was also no significant difference in the tumor 

weight:total weight ratios between the two treatment groups. These results 

indicate that (R)-ketorolac is not affecting the overall tumor growth.  

Lung tissue was assessed for metastatic lesions. Between 12 and 14 

weeks of age, the MMTV-PyMT mouse model exhibits mammary tumor 

metastasis to the lungs (33,106). In the 12 week old mouse population, some 

mice had obvious metastatic lesions, while some had possible small initial sites 

that were difficult to identify, and still others exhibited no lung metastasis at all. 

There was no trend observed between the presence of metastatic sites and 

treatment groups. A longer study treating MMTV-PyMT mice to 14 weeks of age 

is currently underway to allow adequate time for lung metastasis to develop. 

Preliminary results indicate that while there is more overall lung metastasis in the 

14 week old mice, the amount of metastasis is not as great as expected for this 

age of PyMT mouse. Studies of lung tissue collected months earlier, from the 
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same line of MMTV-PyMT mice have shown abundant lung metastasis as early 

as 13 weeks of age (see appendix). It is suspected there has been a genetic drift 

in the expected phenotype of this particular line of mice and it may be prudent to 

end this colony and purchase new breeding pairs, before continuing these 

experiments.   

Considering the lack of lung metastasis trend in the 12 week old mouse 

models, a difference in Rho-GTPase and PyMT gene expression was not 

expected between treatment groups. Nonetheless, PCR was conducted on both 

tumor samples and lung tissue samples from the study, to examine what 

changes, if any, were able to be observed in small Rho-GTPase and PyMT 

expression levels. There were no significant changes in gene expression in the 

tumor samples, most likely because both the (R)-ketorolac and placebo treated 

mice grew tumors at nearly the same rate and had tumors of similar sizes. In the 

lung tissue, there were small upregulations of Rac1b and Cdc42 gene expression 

in the (R)-ketorolac treated mice but the differences were not significant. It was 

expected that the (R)-ketorolac treated mice would exhibit less lung metastasis 

and thus less PyMT gene expression in the lungs than the placebo treated mice 

and while there was a noticeable trend, the difference was not significant. The 14 

week animal studies are expected to exhibit more significant changes in gene 

expression and solidify the trends observed.  

While the animal experiments did not yield complete results, we were able 

to observe interesting trends in ketorolac treated animal models. Therapeutic 

concentrations of ketorolac did not cause toxic effects in MMTV-PyMT breast 
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cancer mouse models. There was a trend in decreased PyMT expression in the 

lungs of mice treated with (R)-ketorolac, suggesting a decrease in tumor 

metastasis, but more work will have to be done to confirm these results. 
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5. SIGNIFICANCE AND FUTURE DIRECTIONS 

Cancer is often described as having specific hallmarks that distinguish it 

from other diseases, one of those being inflammation (123). It has been 

demonstrated that several NSAIDs, such as ketorolac, possess anti-cancer 

properties that may be useful as part of anti-cancer therapies (40). Racemic 

ketorolac is routinely used to reduce pain and inflammation in surgical cases. 

However, the (S)- form of ketorolac is primarily responsible for the drug’s anti-

inflammatory properties (48). (R)-ketorolac, previously believed to be relatively 

inert, has recently been shown to have an important role in decreasing tumor 

metastasis and thus increasing patient survival rates (45). Work performed in our 

research group has found that in ovarian cancer cells, (R)-ketorolac inhibits small 

Rho-GTPases, Rac1 and Cdc42 which are vital in enabling the cell to 

metastasize (50).  

This study demonstrated the ability of (R)-ketorolac to inhibit early breast 

tumor growth without causing significant toxic effects to surrounding cells, or the 

organism as a whole. The main concern with long term use of ketorolac is the 

drug’s toxic effects on the body, including gastrointestinal ulcerations and 

bleeding (42). These toxic effects can be attributed to the (S)- enantiomer of 

ketorolac which inhibits COX1/2, enzymes important in maintaining mucosal 

linings in the stomach and intestines (52). (R)-ketorolac, when used to treat cells 

in culture, was not cytotoxic at relatively high concentrations. It did not alter the 

viability of breast cancer cells, nor did it alter their cell cycle behavior. In mouse 

models, when (R)-ketorolac was used for durations longer than the clinically 
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recommended limit of five days, there were no immediate toxic effects. These 

results indicated that (R)- enantiomer of ketorolac alone may be considered safe 

for long term use.  

The in vitro experiments yielded many negative, but not necessarily 

inconclusive results. From these experiments, we found that (R)-ketorolac is a 

relatively benign drug, not decreasing cell viability or growth but inhibiting the 

cell’s ability to migrate and form colonies. We have not shown a direct interaction 

between (R)-ketorolac and Rac1 and Cdc42 in breast cancer cells, so further 

experiments are imperative to understanding (R)-ketorolac’s mechanism of 

action in breast cancer cells. Immunoblotting to examine the activity of Rac1 and 

Cdc42 in breast cancer cell lines when treated with (R)-ketorolac is one step that 

could be taken.  

The animal studies conducted had a few limitations that are important to 

note. The ability to give each mouse an exact dose of ketorolac every 12 hours 

was not feasible. The mice were given oral doses of ketorolac in the form of 

bacon flavored pills. Sometimes certain mice did not eat their pills, and as the 

study was not conducted by oral gavage, we could not force the mice to eat their 

pills if they refused. Careful notes were taken and mice that refused their pills the 

majority of the time were dropped from the study. The occasional missed dose 

was noted, but not considered an absolute reason to drop the mouse from the 

study. While not optimal, it is very likely that an actual human may occasionally 

forget to take their medication at the exact indicated time.  
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One complication that arose with the mouse studies was lack of 

knowledge of the exact duration of time necessary to run the experiment. While 

the literature indicates positive lung metastasis in MMTV-PyMT mice at 14 weeks 

of age, this particular group of MMTV-PyMT mice has been known in the past to 

have lung metastasis at 12-13 weeks old (33). However, there was a suspected 

genetic drift, because at 12 weeks old, there was little to no lung metastasis 

observed in the lung sections. Briefly, lung tissue samples from untreated PyMT 

mice in this same breeding group at 12, 13, 14, and 16 weeks of age were H&E 

stained and examined for metastasis. It was decided that 14 weeks would be the 

best age of sacrifice for examining lung metastasis. Currently, another study is 

being conducted, carrying out this experiment to 14 weeks, and some of that 

data has been included in the results. We hope to see a positive effect of (R)-

ketorolac treatment on lung metastasis.  

Future animal experiments could involve other known breast cancer 

mouse models such as a HER2 mouse models. It is important to ask the 

question: Does (R)-ketorolac treatment yield significant benefits in other breast 

cancer models? It would also be interesting to examine the effects of (R)-

ketorolac treatment on xenograft or allograft mouse models. Additionally, 

conducting longer term experiments, modeling a chronically medicated individual, 

could yield information about how long a patient may benefit from (R)-ketorolac 

treatment, and answer the questions: Is there a point where (R)-ketorolac 

treatment is no longer significantly beneficial? And is (R)-ketorolac treatment able 

to keep metastasis at bay, long term? Finally, because (R)-ketorolac has been 
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shown to have positive results in multiple cancer forms, including ovarian, colon 

and now breast cancer, testing its effectiveness on preventing metastasis of 

other forms of cancer could be a logical next step.  

What we know from these experiments, it is possible that the (R)-ketorolac 

enantiomers may be safely used for long term treatment in an effort to decrease 

breast cancer metastasis, although more evidence is needed. As FDA guidelines 

become stricter, it will be important to look at pre-approved drugs in new ways. 

Currently, much of the focus of cancer drug discovery is on creating new 

compounds that have toxic effects on cancer cells. While some of these 

compounds may be effective at killing cancer cells, they can often be so toxic 

that they could never be successfully used in vivo without causing serious 

damage or death. New drugs take approximately 10-15 years to advance from 

invention to routine clinical use and can cost millions of dollars during the course 

of development (124). Utilizing FDA approved drugs in off-label use against 

cancerous cells can improve cancer treatment options and decrease the time it 

takes for a therapeutic approach to move from the bench to clinical treatment. 

These experiments and other evidence in the literature suggest a benefit to 

administering even racemic ketorolac to cancer patients over other pain or anti-

inflammatory medications. A decrease in early breast cancer metastasis will lead 

to more positive patient outcomes, enabling patients to live a longer, better 

quality of life.  
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6. APPENDIX 

 

Figure 6.1 MMTV-PyMT Mouse Lung Metastasis Time Course 

MMTV-PyMT mice were sacrificed at increasing age time points and lung tissue 

was H&E stained and analyzed for presence and size of metastasis lesions. 

These mice were not given any drug treatments. At 12 weeks of age, almost no 

mice had lung metastasis. At 13 weeks of age the numbers of lung metastasis 

foci increased and remained around the same quantity at 16 weeks. This 

information helped us form the decision to repeat the long term (R)-ketorolac 

study to extend the sacrifice age to 14 weeks rather than 12 weeks. The total 

lung metastasis area increased around 13 weeks and remained around the same 

area at 16 weeks. There was a decrease in lung metastasis area at 14 weeks for 

this set of data, but there were only two data points at 14 weeks. There were no 

samples available for the 15 week time point.   



www.manaraa.com

107 
 

7. REFERENCES 

 

1.  American Cancer Society. Cancer Facts & Figures 2015. 2015;  
 

2.  Jordan VC. Fourteenth Gaddum Memorial Lecture. A current view of 
tamoxifen for the treatment and prevention of breast cancer. Br J 
Pharmacol. 1993;110:507–17.  

 

3.  Cianfrocca M, Goldstein LJ. Prognostic and predictive factors in early-
stage breast cancer. Oncologist [Internet]. 2004;9:606–16. Available from: 
http://www.ncbi.nlm.nih.gov/pubmed/23220842 

 

4.  Group EBCTC. Tamoxifen for early breast cancer: an overview of the 
randomised trials. Lance [Internet]. 1998;351:1451–67. Available from: 
http://www.ncbi.nlm.nih.gov/pubmed/9605801 

 

5.  Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka C a., et al. 
Triple-negative breast cancer: Clinical features and patterns of recurrence. 
Clin Cancer Res. 2007;13:4429–34.  

 

6.  Haffty BG, Yang Q, Reiss M, Kearney T, Higgins S a., Weidhaas J, et al. 
Locoregional relapse and distant metastasis in conservatively managed 
triple negative early-stage breast cancer. J Clin Oncol. 2006;24:5652–7.  

 

7.  Breast Cancer Treatment (PDQ®): Treatment Option Overview [Internet]. 
Natl. Cancer Inst. NIH. 2015 [cited 2015 May 25]. Available from: 
http://www.cancer.gov/types/breast/patient/breast-treatment-
pdq#section/_185 

 

8.  Types of Breast Cancer: ER Positive, HER2 Positive, and Triple Negative 
[Internet]. WebMD. 2012 [cited 2015 May 25]. Available from: 
http://www.webmd.com/breast-cancer/breast-cancer-types-er-positive-
her2-positive 

 

9.  Silberman A. ER-Positive Breast Cancer: Prognosis, Life Expectancy, and 
More [Internet]. Healthline. 2014 [cited 2015 May 25]. Available from: 
http://www.healthline.com/health/breast-cancer/er-positive-prognosis-life-
expectancy#Overview1 

 



www.manaraa.com

108 
 

10.  Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. 
Human breast cancer: correlation of relapse and survival with amplification 
of the HER-2/neu oncogene. Science. 1987;235:177–82.  

 

11.  Yarden Y. Biology of HER2 and its importance in breast cancer. Oncology. 
2001;61 Suppl 2:1–13.  

 

12.  Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, et al. 
Studies of the HER-2/neu proto-oncogene in human breast and ovarian 
cancer. Science. 1989;244:707–12.  

 

13.  Mitri Z, Constantine T, O’Regan R. The HER2 Receptor in Breast Cancer: 
Pathophysiology, Clinical Use, and New Advances in Therapy. Chemother 
Res Pract [Internet]. 2012;2012:743193. Available from: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3539433&tool=p
mcentrez&rendertype=abstract 

 

14.  Stern DF, Heffernan P a, Weinberg R a. P185, a Product of the Neu Proto-
Oncogene, Is a Receptorlike Protein Associated With Tyrosine Kinase 
Activity. Mol Cell Biol. 1986;6:1729–40.  

 

15.  Akiyama T, Sudo C, Ogawara H, Toyoshima K, Yamamoto T. The product 
of the human c-erbB-2 gene: a 185-kilodalton glycoprotein with tyrosine 
kinase activity. Science. 1986;232:1644–6.  

 

16.  Olayioye M a, Neve RM, Lane H a, Hynes NE. The ErbB signaling network: 
receptor heterodimerization in development and cancer. EMBO J. 
2000;19:3159–67.  

 

17.  Morgensztern D, McLeod HL. PI3K/Akt/mTOR pathway as a target for 
cancer therapy. Anticancer Drugs. 2005;16:797–803.  

 

18.  Borg  a, Tandon  a K, Sigurdsson H, Clark GM, Ferno M, Fuqua S a, et al. 
HER-2/neu amplification predicts poor survival in node-positive breast 
cancer. Cancer Res. 1990;50:4332–7.  

 

19.  Winstanley J, Cooke T, Murray GD, Platt-Higgins  a, George WD, Holt S, et 
al. The long term prognostic significance of c-erbB-2 in primary breast 
cancer. Br J Cancer. 1991;63:447–50.  

 



www.manaraa.com

109 
 

20.  Clark GM, Mcguire WL. Follow-up Study of HER-2 / neu Amplification in 
Primary Breast Cancer. Cancer Res. 1991;51:944–8.  

 

21.  Tandon  a. K, Clark GM, Chamness GC, Ullrich  a., McGuire WL. HER-
2/neu oncogene protein and prognosis in breast cancer. J Clin Oncol. 
1989;7:1120–8.  

 

22.  Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et 
al. Use of chemotherapy plus a monoclonal antibody against HER2 for 
metastatic breast cancer that overexpresses HER2. [Internet]. N. Engl. J. 
Med. 2001. Available from: 
http://www.nejm.org/doi/full/10.1056/NEJM200103153441101 

 

23.  Cho H-S, Mason K, Ramyar KX, Stanley AM, Gabelli SB, Denney DW, et 
al. Structure of the extracellular region of HER2 alone and in complex with 
the Herceptin Fab. Nature. 2003;421:756–60.  

 

24.  Marrazzo JM, Ramjee G, Richardson BA, Gomez K, Mgodi N, Nair G, et al. 
Tenofovir-based preexposure prophylaxis for HIV infection among African 
women. N Engl J Med [Internet]. 2015;372:509–18. Available from: 
http://www.ncbi.nlm.nih.gov/pubmed/25651245 

 

25.  Vogel CL, Cobleigh M a, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher 
L, et al. Efficacy and Safety of Trastuzumab as a Single Agent in First-Lin 
Treatment of HER2-Overexpressing Metastatic Breast Cancer. J Clin 
Oncol. 2003;20:719–26.  

 

26.  Romond EH, Perez E a, Bryant J, Suman VJ, Geyer CE, Davidson NE, et 
al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive 
breast cancer. N Engl J Med. 2005;353:1673–84.  

 

27.  Cancer Drugs & Oncology Drugs [Internet]. MediLexicon. 2013. Available 
from: http://www.medilexicon.com/drugs-list/cancer.php 

 

28.  Wang D-Y, Fulthorpe R, Liss SN, Edwards EA. Identification of estrogen-
responsive genes by complementary deoxyribonucleic acid microarray and 
characterization of a novel early estrogen-induced gene: EEIG1. Mol 
Endocrinol. 2004;18:402–11.  

 

29.  Williams GM, Iatropoulos MJ, Djordjevic M V, Kaltenberg OP. The 



www.manaraa.com

110 
 

triphenylethylene drug tamoxifen is a strong liver carcinogen in the rat. 
Carcinogenesis. 1993;14:315–7.  

 

30.  Rutqvist LE, Johansson H, Signomklao T, Johansson U, Fornander T, 
Wilking N. Adjuvant tamoxifen therapy for early stage breast cancer and 
second primary malignancies. Stockholm Breast Cancer Study Group. J. 
Natl. Cancer Inst. 1995.  

 

31.  Polin S a., Ascher SM. The effect of tamoxifen on the genital tract. Cancer 
Imaging. 2008;8:135–45.  

 

32.  Kedar RP, Bourne TH, Powles TJ, Collins WP, Ashley SE, Cosgrove DO, 
et al. Effects of tamoxifen on uterus and ovaries of postmenopausal 
women in a randomised breast cancer prevention trial. Lancet. 
1994;343:1318–21.  

 

33.  Marjon N a, Hu C, Hathaway HJ, Prossnitz ER. G protein-coupled estrogen 
receptor regulates mammary tumorigenesis and metastasis. Mol Cancer 
Res [Internet]. 2014 [cited 2014 Nov 20];12:1644–54. Available from: 
http://www.ncbi.nlm.nih.gov/pubmed/25030371 

 

34.  Rowinsky EK, Eisenhauer EA, Chaudhry V, Arbuck SG, Donehower RC. 
Clinical toxicities encountered with paclitaxel (Taxol). Semin Oncol. 
1993;20:1–15.  

 

35.  Morrison KC, Hergenrother PJ. Whole cell microtubule analysis by flow 
cytometry. Anal Biochem [Internet]. 2012 [cited 2015 Mar 24];420:26–32. 
Available from: 
http://www.sciencedirect.com/science/article/pii/S0003269711005409 

 

36.  Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med. 
2002;53:615–27.  

 

37.  T. T, M. N, a. T, N. F, T. M, H. S, et al. Molecular targeting therapy of 
cancer: Drug resistance, apoptosis and survival signal. Cancer Sci 
[Internet]. 2003;94:15–21. Available from: 
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed6&N
EWS=N&AN=2003198227 

 

38.  Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug 



www.manaraa.com

111 
 

resistance: an evolving paradigm. Nat Rev Cancer [Internet]. Nature 
Publishing Group; 2013;13:714–26. Available from: 
http://www.ncbi.nlm.nih.gov/pubmed/24060863 

 

39.  Mestre-Ferrandiz, J., Sussex, J., Towse A. The R&D Cost of a New 
Medicine. London: Office of Health Economics; 2012.  

 

40.  Oprea TI, Bauman JE, Bologa CG, Buranda T, Chigaev A, Edwards BS, et 
al. Drug Repurposing from an Academic Perspective. Drug Discov Today 
Ther Strateg [Internet]. Elsevier Ltd; 2011 [cited 2014 Jun 19];8:61–9. 
Available from: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3285382&tool=p
mcentrez&rendertype=abstract 

 

41.  Gillis JC, Brogden RN. Ketorolac. A reappraisal of its pharmacodynamic 
and pharmacokinetic properties and therapeutic use in pain management. 
Drugs. 1997;53:139–88.  

 

42.  ketorolac (Rx) - Toradol [Internet]. WebMD. 2015 [cited 2015 Jun 30]. 
Available from: http://reference.medscape.com/drug/ketorolac-343292 

 

43.  Retsky M, Demicheli R, Hrushesky WJM, Forget P, De Kock M, Gukas I, et 
al. Reduction of breast cancer relapses with perioperative non-steroidal 
anti-inflammatory drugs: new findings and a review. Curr Med Chem 
[Internet]. 2013;20:4163–76. Available from: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3831877&tool=p
mcentrez&rendertype=abstract 

 

44.  Forget P, Machiels J-P, Coulie PG, Berliere M, Poncelet AJ, Tombal B, et 
al. Neutrophil:lymphocyte ratio and intraoperative use of ketorolac or 
diclofenac are prognostic factors in different cohorts of patients undergoing 
breast, lung, and kidney cancer surgery. Ann Surg Oncol [Internet]. 
2013;20 Suppl 3:S650–60. Available from: 
http://www.ncbi.nlm.nih.gov/pubmed/23884751 

 

45.  Guo Y, Kenney SR, Cook LS, Adams SF, Rutledge T, Romero E, et al. A 
novel pharmacologic activity of ketorolac for therapeutic benefit in ovarian 
cancer patients. Clin Cancer Res [Internet]. 2015; Available from: 
http://clincancerres.aacrjournals.org/cgi/doi/10.1158/1078-0432.CCR-15-
0461 

 



www.manaraa.com

112 
 

46.  Forget P, Vandenhende J, Berliere M, MacHiels JP, Nussbaum B, Legrand 
C, et al. Do intraoperative analgesics influence breast cancer recurrence 
after mastectomy? A retrospective analysis. Anesth Analg. 
2010;110:1630–5.  

 

47.  Retsky M, Rogers R, Demicheli R, Hrushesky WJ, Gukas I, Vaidya JS, et 
al. NSAID analgesic ketorolac used perioperatively may suppress early 
breast cancer relapse: particular relevance to triple negative subgroup. 
Breast Cancer Res Treat [Internet]. 2012 [cited 2014 Jun 19];134:881–8. 
Available from: http://www.ncbi.nlm.nih.gov/pubmed/22622810 

 

48.  Handley DA, Cervoni P, McCray JE, McCullough JR. Preclinical 
enantioselective pharmacology of (R)- and (S)- ketorolac. J Clin Pharmacol 
[Internet]. 1998 [cited 2014 Jun 19];38:25S – 35S. Available from: 
http://www.ncbi.nlm.nih.gov/pubmed/9549656 

 

49.  Jerussi TP, Caubet JF, McCray JE, Handley D a. Clinical endoscopic 
evaluation of the gastroduodenal tolerance to (R)- ketoprofen, (R)- 
flurbiprofen, racemic ketoprofen, and paracetamol: a randomized, single-
blind, placebo-controlled trial. J Clin Pharmacol. 1998;38:19S – 24S.  

 

50.  Guo Y, Kenney SR, Muller CY, Adams S, Rutledge T, Romero E, et al. R-
ketorolac Targets Cdc42 and Rac1 and Alters Ovarian Cancer Cell 
Behaviors Critical for Invasion and Metastasis. Mol Cancer Ther [Internet]. 
2015; Available from: http://mct.aacrjournals.org/cgi/doi/10.1158/1535-
7163.MCT-15-0419 

 

51.  Oprea, Tudor I., Sklar, Larry A., Agola, Jacob O., Guo, Yuna, Silberberg, 
Melina, Roxby, Joshua  et al. Novel activities of select NSAID R-
enantiomers against Rac1 and Cdc42 GTPases. PLoS One. 2015;  

 

52.  Mroszczak E, Combs D, Chaplin M, Tsina I, Tarnowski T, Rocha C, et al. 
Chiral kinetics and dynamics of ketorolac. J Clin Pharmacol. 1996;36:521–
39.  

 

53.  Dempke W, Rie C, Grothey  a, Schmoll HJ. Cyclooxygenase-2: a novel 
target for cancer chemotherapy? J Cancer Res Clin Oncol. 2001;127:411–
7.  

 

54.  Vane JR, Bakhle YS, Botting RM. Cyclooxygenases 1 and 2. Annu Rev 
Pharmacol Toxicol. 1998;38:97–120.  



www.manaraa.com

113 
 

 

55.  Moskowitz MA, Coughlin SR. Clinical applications of prostaglandins and 
their inhibitors. Stroke. 1981;12:882–6.  

 

56.  Hejna M, Raderer M, Zielinski CC. Inhibition of metastases by 
anticoagulants. J Natl Cancer Inst. 1999;91:22–36.  

 

57.  Leung KH, Mihich E. Prostaglandin modulation of development of cell-
mediated immunity in culture. Nature. 1980;288:597–600.  

 

58.  Brunda MJ, Herberman RB, Holden HT. Inhibition of murine natural killer 
cell activity by prostaglandins. J Immunol. 1980;124:2682–7.  

 

59.  Milas L, Kishi K, Mason K, Jaime L, Tofilon PJ. BRIEF Enhancement of 
Tumor. Communication. 1999;91:1501–4.  

 

60.  Taketo MM. Cyclooxygenase-2 Inhibitors in Tumorigenesis ( Part I ). 
1998;90:1529–36.  

 

61.  Fosslien E. Molecular pathology of cyclooxygenase-2 in neoplasia. Ann 
Clin Lab Sci [Internet]. Institute for Clinical Science; [cited 2015 Mar 
25];30:3–22. Available from: 
http://cat.inist.fr/?aModele=afficheN&cpsidt=1292972 

 

62.  Nelson  a R, Fingleton B, Rothenberg ML, Matrisian LM. Matrix 
metalloproteinases: biologic activity and clinical implications. J Clin Oncol. 
2000;18:1135–49.  

 

63.  Pakneshan P, Birsner AE, Adini I, Becker CM, D’Amato RJ. Differential 
suppression of vascular permeability and corneal angiogenesis by 
nonsteroidal anti-inflammatory drugs. Investig Ophthalmol Vis Sci. 
2008;49:3909–13.  

 

64.  Krebs MG, Hou J-M, Ward TH, Blackhall FH, Dive C. Circulating tumour 
cells: their utility in cancer management and predicting outcomes. Ther Adv 
Med Oncol. 2010;2:351–65.  

 

65.  Zhe X, Cher ML, Bonfil RD. Circulating tumor cells: finding the needle in 
the haystack. Am J Cancer Res [Internet]. 2011;1:740–51. Available from: 



www.manaraa.com

114 
 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3195935&tool=p
mcentrez&rendertype=abstract 

 

66.  Tang Y, Olufemi L, Wang M-T, Nie D. Role of Rho GTPases in breast 
cancer. Front Biosci [Internet]. 2008 [cited 2014 Jun 25];13:759–76. 
Available from: http://www.bioscience.org/2008/v13/af/2718/list.htm 

 

67.  Fritz G, Just I, Kaina B. Rho GTPases are over-expressed in human 
tumors. Int J Cancer. 1999;81:682–7.  

 

68.  Fritz G, Brachetti C, Bahlmann F, Schmidt M, Kaina B. Rho GTPases in 
human breast tumours: expression and mutation analyses and correlation 
with clinical parameters. Br J Cancer. 2002;87:635–44.  

 

69.  Schnelzer  a, Prechtel D, Knaus U, Dehne K, Gerhard M, Graeff H, et al. 
Rac1 in human breast cancer: overexpression, mutation analysis, and 
characterization of a new isoform, Rac1b. Oncogene [Internet]. 
2000;19:3013–20. Available from: 
http://www.ncbi.nlm.nih.gov/pubmed/10871853 

 

70.  Kleer CG, van Golen KL, Zhang Y, Wu Z-F, Rubin M a, Merajver SD. 
Characterization of RhoC expression in benign and malignant breast 
disease: a potential new marker for small breast carcinomas with 
metastatic ability. Am J Pathol [Internet]. American Society for Investigative 
Pathology; 2002;160:579–84. Available from: 
http://dx.doi.org/10.1016/S0002-9440(10)64877-8 

 

71.  Jett MF, Ramesha CS, Brown CD, Chiu S, Emmett C, Voronin T, et al. 
Characterization of the analgesic and anti-inflammatory activities of 
ketorolac and its enantiomers in the rat. J Pharmacol Exp Ther. 
1999;288:1288–97.  

 

72.  Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A. The small 
GTP-binding protein rac regulates growth factor-induced membrane 
ruffling. Cell [Internet]. 1992 [cited 2015 Mar 24];70:401–10. Available from: 
http://www.sciencedirect.com/science/article/pii/0092867492901648 

 

73.  Hall  a. Rho GTPases and the Actin Cytoskeleton. Science (80- ). 
1998;279:509–14.  

 



www.manaraa.com

115 
 

74.  Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature. 
2002;420:629–35.  

 

75.  Van Aelst L, D’Souza-Schorey C. Rho GTPases and signaling networks. 
Genes Dev. 1997;11:2295–322.  

 

76.  Pasqualucci L, Neumeister P, Goossens T, Nanjangud G, Chaganti RS, 
Küppers R, et al. Hypermutation of multiple proto-oncogenes in B-cell 
diffuse large-cell lymphomas. Nature. 2001;412:341–6.  

 

77.  Preudhomme C, Roumier C, Hildebrand MP, Dallery-Prudhomme E, 
Lantoine D, Laï JL, et al. Nonrandom 4p13 rearrangements of the 
RhoH/TTF gene, encoding a GTP-binding protein, in non-Hodgkin’s 
lymphoma and multiple myeloma. Oncogene. 2000;19:2023–32.  

 

78.  Jordan P, Brazåo R, Boavida MG, Gespach C, Chastre E. Cloning of a 
novel human Rac1b splice variant with increased expression in colorectal 
tumors. Oncogene [Internet]. 1999;18:6835–9. Available from: 
http://www.ncbi.nlm.nih.gov/pubmed/10597294 

 

79.  Katz E, Sims AH, Sproul D, Caldwell H, Dixon JM, Meehan RR, et al. 
Targeting of Rac GTPases blocks the spread of intact human breast 
cancer ABSTRACT : Oncotarget. 2012;3:608–13.  

 

80.  Kawazu M, Ueno T, Kontani K, Ogita Y, Ando M, Fukumura K, et al. 
Transforming mutations of RAC guanosine triphosphatases in human 
cancers. Proc Natl Acad Sci U S A [Internet]. 2013;110:3029–34. Available 
from: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3581941&tool=p
mcentrez&rendertype=abstract 

 

81.  Alan JK, Lundquist EA. Mutationally activated Rho GTPases in cancer. 
Small GTPases [Internet]. 2013;4:159–63. Available from: 
http://www.tandfonline.com/doi/abs/10.4161/sgtp.26530 

 

82.  Ellenbroek SIJ, Collard JG. Rho GTPases: Functions and association with 
cancer. Clin Exp Metastasis. 2007;24:657–72.  

 

83.  Mertens AE, Roovers RC, Collard JG. Regulation of Tiam1-Rac signalling. 
FEBS Lett. 2003;546:11–6.  



www.manaraa.com

116 
 

 

84.  Gururaj AE, Rayala SK, Kumar R. P21-Activated Kinase Signaling in 
Breast Cancer. Breast Cancer Res. 2005;7:5–12.  

 

85.  Jaffe AB, Hall A. Rho GTPases: biochemistry and biology. Annu Rev Cell 
Dev Biol. 2005;21:247–69.  

 

86.  Nobes CD, Hall  a. Rho, rac, and cdc42 GTPases regulate the assembly of 
multimolecular focal complexes associated with actin stress fibers, 
lamellipodia, and filopodia. Cell. 1995;81:53–62.  

 

87.  Kozma R, Ahmed S, Best  a, Lim L. The Ras-related protein Cdc42Hs and 
bradykinin promote formation of peripheral actin microspikes and filopodia 
in Swiss 3T3 fibroblasts. Mol Cell Biol. 1995;15:1942–52.  

 

88.  Hall  a. Rho GTPases and the control of cell behaviour. Biochem Soc 
Trans. 2005;33:891–5.  

 

89.  Baugher PJ, Krishnamoorthy L, Price JE, Dharmawardhane SF. Rac1 and 
Rac3 isoform activation is involved in the invasive and metastatic 
phenotype of human breast cancer cells. Breast Cancer Res. 
2005;7:R965–74.  

 

90.  Ridley AJ, Hall A. The small GTP-binding protein rho regulates the 
assembly of focal adhesions and actin stress fibers in response to growth 
factors. Cell. 1992;70:389–99.  

 

91.  Worthylake R a., Lemoine S, Watson JM, Burridge K. RhoA is required for 
monocyte tail retraction during transendothelial migration. J Cell Biol. 
2001;154:147–60.  

 

92.  Denoyelle C, Albanese P, Uzan G, Hong L, Vannier JP, Soria J, et al. 
Molecular mechanism of the anti-cancer activity of cerivastatin, an inhibitor 
of HMG-CoA reductase, on aggressive human breast cancer cells. Cell 
Signal. 2003;15:327–38.  

 

93.  Pillé JY, Denoyelle C, Varet J, Bertrand JR, Soria J, Opolon P, et al. Anti-
RhoA and Anti-RhoC siRNAs inhibit the proliferation and invasiveness of 
MDA-MB-231 breast cancer cells in vitro and in vivo. Mol Ther. 



www.manaraa.com

117 
 

2005;11:267–74.  
 

94.  Yuan B-Z, Zhou X, Durkin ME, Zimonjic DB, Gumundsdottir K, Eyfjord JE, 
et al. DLC-1 gene inhibits human breast cancer cell growth and in vivo 
tumorigenicity. Oncogene. 2003;22:445–50.  

 

95.  Durkin ME, Avner MR, Huh CG, Yuan BZ, Thorgeirsson SS, Popescu NC. 
DLC-1, a Rho GTPase-activating protein with tumor suppressor function, is 
essential for embryonic development. FEBS Lett. 2005;579:1191–6.  

 

96.  Liao YC, Lo SH. Deleted in liver cancer-1 (DLC-1): A tumor suppressor not 
just for liver. Int J Biochem Cell Biol. 2008;40:843–7.  

 

97.  Goodison S, Yuan J, Sloan D, Kim R, Li C, Popescu NC, et al. The 
RhoGAP Protein DLC-1 Functions as a Metastasis Suppressor in Breast 
Cancer Cells The RhoGAP Protein DLC-1 Functions as a Metastasis 
Suppressor in Breast Cancer Cells. 2005;6042–53.  

 

98.  Plaumann M, Seitz S, Frege R, Estevez-Schwarz L, Scherneck S. Analysis 
of DLC-1 expression in human breast cancer. J Cancer Res Clin Oncol. 
2003;129:349–54.  

 

99.  Sander EE, Ten Klooster JP, Van Delft S, Van Der Kammen R a., Collard 
JG. Rac downregulates Rho activity: Reciprocal balance between both 
GTPases determines cellular morphology and migratory behavior. J Cell 
Biol. 1999;147:1009–21.  

 

100.  Michiels F, Habets GG, Stam JC, van der Kammen R a, Collard JG. A role 
for Rac in Tiam1-induced membrane ruffling and invasion. Nature. 1995. 
page 338–40.  

 

101.  Mertens  a. EE, Rygiel TP, Olivo C, Van Der Kammen R, Collard JG. The 
Rac activator Tiam1 controls tight junction biogenesis in keratinocytes 
through binding to and activation of the Par polarity complex. J Cell Biol. 
2005;170:1029–37.  

 

102.  Hordijk PL, ten Klooster JP, van der Kammen R a, Michiels F, Oomen LC, 
Collard JG. Inhibition of invasion of epithelial cells by Tiam1-Rac signaling. 
Science. 1997;278:1464–6.  

 



www.manaraa.com

118 
 

103.  Adam L, Vadlamudi RK, McCrea P, Kumar R. Tiam1 Overexpression 
Potentiates Heregulin-induced Lymphoid Enhancer Factor-1/β-Catenin 
Nuclear Signaling in Breast Cancer Cells by Modulating the Intercellular 
Stability. J Biol Chem. 2001;276:28443–50.  

 

104.  Minard ME, Kim LS, Price JE, Gallick GE. The role of the guanine 
nucleotide exchange factor Tiam1 in cellular migration, invasion, adhesion 
and tumor progression. Breast Cancer Res Treat. 2004;84:21–32.  

 

105.  Strumane K, Rygiel T, Van Der Valk M, Collard JG. Tiam1-deficiency 
impairs mammary tumor formation in MMTV-c-neu but not in MMTV-c-myc 
mice. J Cancer Res Clin Oncol. 2009;135:69–80.  

 

106.  Lin EY, Jones JG, Li P, Zhu L, Whitney KD, Muller WJ, et al. Progression 
to malignancy in the polyoma middle T oncoprotein mouse breast cancer 
model provides a reliable model for human diseases. Am J Pathol 
[Internet]. 2003 [cited 2015 Feb 4];163:2113–26. Available from: 
http://www.sciencedirect.com/science/article/pii/S0002944010635687 

 

107.  Fantozzi A, Christofori G. Mouse models of breast cancer metastasis. 
Breast Cancer Res. 2006;8:212.  

 

108.  Maglione JE, Moghanaki D, Young LJT, Manner CK, Ellies LG, Joseph SO, 
et al. Transgenic Polyoma middle-T mice model premalignant mammary 
disease. Cancer Res. 2001;61:8298–305.  

 

109.  Gillett C, Smith P, Gregory W, Richards M, Millis R, Peters G, et al. Cyclin 
D1 and Prognosis in Human Breast Cancer. 1996;99:92–9.  

 

110.  Lapidus RG, Nass SJ, Davidson NE. The loss of estrogen and 
progesterone receptor gene expression in human breast cancer. J 
Mammary Gland Biol Neoplasia. 1998;3:85–94.  

 

111.  Guy CT, Cardiff RD, Muller WJ. Induction of mammary tumors by 
expression of polyomavirus middle T oncogene: a transgenic mouse model 
for metastatic disease. Mol Cell Biol. 1992;12:954–61.  

 

112.  Rodriguez-Viciana P, Collins C, Fried M. Polyoma and SV40 proteins 
differentially regulate PP2A to activate distinct cellular signaling pathways 
involved in growth control. Proc Natl Acad Sci U S A [Internet]. 2006 [cited 



www.manaraa.com

119 
 

2015 Apr 10];103:19290–5. Available from: 
http://www.pnas.org/cgi/content/long/103/51/19290 

 

113.  Urich M, Senften M, Shaw PE, Ballmer-Hofer K. A role for the small 
GTPase Rac in polyomavirus middle-T antigen-mediated activation of the 
serum response element and in cell transformation. Oncogene [Internet]. 
1997;14:1235–41. Available from: 
http://www.ncbi.nlm.nih.gov/pubmed/9121774 

 

114.  Kim IS, Baek SH. Mouse models for breast cancer metastasis. Biochem 
Biophys Res Commun [Internet]. Elsevier Inc.; 2010 [cited 2014 Jul 
2];394:443–7. Available from: 
http://www.ncbi.nlm.nih.gov/pubmed/20230796 

 

115.  Forget P, Bentin C, Machiels JP, Berliere M, Coulie PG, De Kock M. 
Intraoperative use of ketorolac or diclofenac is associated with improved 
disease-free survival and overall survival in conservative breast cancer 
surgery. Br J Anaesth. 2014;113:82–7.  

 

116.  Hande K. Etoposide: four decades of development of a topoisomerase II 
inhibitor. Eur J Cancer [Internet]. Elsevier Science Ltd.; 1998 [cited 2014 
Jun 25];34:1514–21. Available from: 
http://linkinghub.elsevier.com/retrieve/pii/S0959804998002287 

 

117.  Loike JD, Horwitz SB. Effects of podophyllotoxin and VP-16-213 on 
microtubule assembly in vitro and nucleoside transport in HeLa cells. 
Biochemistry [Internet]. 1976 [cited 2014 Jun 25];15:5435–43. Available 
from: http://pubs.acs.org/doi/abs/10.1021/bi00670a003 

 

118.  Trevigen. Table of Contents 96 Well 3D Spheroid BME Cell Invasion Assay 
[Internet]. Gaithersburg: Trevigen, Inc.; 2012. Available from: 
http://www.trevigen.com/docs/1354634644.3500-096-k_e10-18-
12v0.pdf?guid=1447177437 

 

119.  Walker MK, Boberg JR, Walsh MT, Wolf V, Trujillo A, Duke MS, et al. A 
less stressful alternative to oral gavage for pharmacological and 
toxicological studies in mice. Toxicol Appl Pharmacol [Internet]. Elsevier 
Inc.; 2012 [cited 2014 Jun 19];260:65–9. Available from: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3306547&tool=p
mcentrez&rendertype=abstract 

 



www.manaraa.com

120 
 

120.  Lu J, Steeg PS, Price JE, Krishnamurthy S, Mani S a., Reuben J, et al. 
Breast cancer metastasis: Challenges and opportunities. Cancer Res. 
2009;69:4951–3.  

 

121.  Lee YT. Breast carcinoma: pattern of metastasis at autopsy. J Surg Oncol. 
1983;23:175–80.  

 

122.  Muller WJ, Sinn E, Pattengale PK, Wallace R, Leder P. Single-step 
induction of mammary adenocarcinoma in transgenic mice bearing the 
activated c-neu oncogene. Cell. 1988;54:105–15.  

 

123.  Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 
[Internet]. 2011 [cited 2014 Jul 9];144:646–74. Available from: 
http://www.sciencedirect.com/science/article/pii/S0092867411001279 

 

124.  Gavura S. What does a new drug cost? Part II: The productivity problem 
[Internet]. Sci. Med. 2012 [cited 2013 Apr 9]. Available from: 
http://www.sciencebasedmedicine.org/index.php/what-does-a-new-drug-
cost-part-ii-the-productivity-problem/ 

 

 

 


